Suppr超能文献

中国24小时无缝隙地表颗粒物实时制图。

Real-time mapping of gapless 24-hour surface PM in China.

作者信息

Zhang Xutao, Gui Ke, Zhao Hengheng, Shang Nanxuan, Zeng Zhaoliang, Yao Wenrui, Li Lei, Zheng Yu, Zhao Hujia, Liu Yurun, Miao Yucong, Peng Yue, Fei Ye, Li Fugang, Li Baoxin, Wang Hong, Wang Zhili, Wang Yaqiang, Che Huizheng, Zhang Xiaoye

机构信息

State Key Laboratory of Severe Weather and Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China.

Institute of Artificial Intelligence for Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China.

出版信息

Natl Sci Rev. 2024 Dec 9;12(2):nwae446. doi: 10.1093/nsr/nwae446. eCollection 2025 Feb.

Abstract

Large-scale mapping of surface coarse particulate matter (PM) concentration remains a key focus for air quality monitoring. Satellite aerosol optical depth (AOD)-based data fusion approaches decouple the non-linear AOD-PM relationship, enabling high-resolution PM data acquisition, but are limited by spatial incompleteness and the absence of nighttime data. Here, a gridded visibility-based real-time surface PM retrieval (RT-SPMR) framework for China is introduced, addressing the gap in seamless hourly PM data within the 24-hour cycle. This framework utilizes multisource data inputs and dynamically updated machine-learning models to produce 6.25-km gridded 24-hour PM data. Cross-validation showed that the RT-SPMR model's daily retrieval accuracy surpassed prior studies. Additionally, through rolling iterative validation experiments, the model exhibited strong generalization capability and stability, demonstrating its suitability for operational deployment. Taking a record-breaking dust storm as an example, the model proved effective in tracking the fine-scale evolution of the dust intrusion process, especially in under-observed areas. Consequently, the operational RT-SPMR framework provides comprehensive real-time capability for monitoring PM pollution in China, and has the potential to improve the accuracy of dust storm forecasting models by enhancing the PM initial field.

摘要

地表粗颗粒物(PM)浓度的大规模测绘仍是空气质量监测的重点。基于卫星气溶胶光学厚度(AOD)的数据融合方法可解耦非线性AOD-PM关系,实现高分辨率PM数据采集,但受空间数据不完整性和缺乏夜间数据的限制。本文介绍了一种适用于中国的基于能见度的网格化实时地表PM反演(RT-SPMR)框架,以填补24小时周期内无缝小时级PM数据的空白。该框架利用多源数据输入和动态更新的机器学习模型,生成6.25公里网格化的24小时PM数据。交叉验证表明,RT-SPMR模型的每日反演精度超过了先前的研究。此外,通过滚动迭代验证实验,该模型表现出很强的泛化能力和稳定性,证明其适用于业务部署。以一场破纪录的沙尘暴为例,该模型被证明能有效追踪沙尘入侵过程的细粒度演变,特别是在观测不足的地区。因此,RT-SPMR业务框架为中国的PM污染监测提供了全面的实时监测能力,并且有可能通过增强PM初始场来提高沙尘暴预报模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2335/11925011/672b5c664baf/nwae446fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验