Suppr超能文献

基于分层持续学习的多关节关节病分级分类模型

Classification models for arthropathy grades of multiple joints based on hierarchical continual learning.

作者信息

Jang Bong Kyung, Kim Shiwon, Yu Jae Yong, Hong JaeSeong, Cho Hee Woo, Lee Hong Seon, Park Jiwoo, Woo Jeesoo, Lee Young Han, Park Yu Rang

机构信息

Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Digital Analytics, College of Computing, Yonsei University, Seoul, Republic of Korea.

出版信息

Radiol Med. 2025 Mar 24. doi: 10.1007/s11547-025-01974-4.

Abstract

PURPOSE

To develop a hierarchical continual arthropathy classification model for multiple joints that can be updated continuously for large-scale studies of various anatomical structures.

MATERIALS AND METHODS

This study included a total of 1371 radiographs of knee, elbow, ankle, shoulder, and hip joints from three tertiary hospitals. For model development, 934 radiographs of the knee, elbow, ankle, and shoulder were gathered from Sinchon Severance Hospital between July 1 and December 31, 2022. For external validation, 125 hip radiographs were collected from Yongin Severance Hospital between January 1 and December 31, 2022, and 312 knee cases were gathered from Gangnam Severance Hospital between January 1 and June 31, 2023. The Hierarchical Dynamically Expandable Representation (Hi-DER) model was trained stepwise on four joints using five-fold cross-validation. Arthropathy classification was evaluated at three hierarchical levels: abnormal classification (L1), low-grade or high-grade classification (L2), and specific grade classification (L3). The model's performance was compared with the grading predictions of two other AI models and three radiologists. For model explainability, gradient-weighted class activation mapping (Grad-CAM) and progressive erasing plus progressive restoration (PEPPR) were employed.

RESULTS

The model achieved a weighted average AUC of 0.994 (95% CI: 0.985, 0.999) for L1, 0.980 (95% CI: 0.958, 0.996) for L2, and 0.973 (95% CI: 0.943, 0.993) for L3. The model maintained an AUC above 0.800 with 70% of the input regions erased. During external validation on hip joints, the model demonstrated a weighted average AUC of 0.978 (95% CI: 0.952, 0.996) for L1, 0.977 (95% CI: 0.946, 0.996) for L2, and 0.971 (95% CI: 0.934, 0.996) for L3. For external knee data, the model yielded a weighted average AUC of 0.934 (95%: CI 0.904, 0.958), 0.929 (95% CI: 0.900, 0.954), and 0.857 (95% CI: 0.816, 0.894) for L1, L2, and L3, respectively.

CONCLUSION

The Hi-DER may enhance the efficiency of arthropathy diagnosis through accurate classification of arthropathy grades across multiple joints, potentially enabling early treatment.

摘要

目的

开发一种用于多个关节的分层连续性关节病分类模型,该模型可针对各种解剖结构的大规模研究进行持续更新。

材料与方法

本研究共纳入来自三家三级医院的1371张膝关节、肘关节、踝关节、肩关节和髋关节的X线片。为进行模型开发,于2022年7月1日至12月31日期间从新村Severance医院收集了934张膝关节、肘关节、踝关节和肩关节的X线片。为进行外部验证,于2022年1月1日至12月31日期间从龙仁Severance医院收集了125张髋关节X线片,并于2023年1月1日至6月31日期间从江南Severance医院收集了312例膝关节病例。使用五折交叉验证在四个关节上逐步训练分层动态可扩展表示(Hi-DER)模型。在三个分层级别评估关节病分类:异常分类(L1)、低级别或高级别分类(L2)以及特定级别分类(L3)。将该模型的性能与其他两个人工智能模型和三位放射科医生的分级预测进行比较。为了实现模型可解释性,采用了梯度加权类激活映射(Grad-CAM)和渐进式擦除加渐进式恢复(PEPPR)。

结果

该模型在L1级别上的加权平均AUC为0.994(95%CI:0.985,0.999),L2级别为0.980(95%CI:0.958,0.996),L3级别为0.973(95%CI:0.943,0.993)。当70%的输入区域被擦除时,该模型的AUC仍保持在0.800以上。在髋关节的外部验证中,该模型在L1级别上的加权平均AUC为0.978(95%CI:0.952,0.996),L2级别为0.977(95%CI:0.946,0.996),L3级别为0.971(95%CI:0.934,0.996)。对于外部膝关节数据,该模型在L1、L2和L3级别上的加权平均AUC分别为0.934(95%:CI 0.904,0.958)、0.929(95%CI:0.900,0.954)和0.857(95%CI:0.816,0.894)。

结论

Hi-DER模型可能通过对多个关节的关节病等级进行准确分类来提高关节病诊断的效率,从而有可能实现早期治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验