Li Shanshan, Du Feng, Zhang Yan, Wang Qiang, Dou Jianjian, Meng Xiangjiao
Shandong University Cancer Center, jinan, Shandong, China.
Department of Radiation Oncology, Zibo Municipal Hospital, Zibo, Shandong, China.
BMC Cancer. 2025 Mar 25;25(1):541. doi: 10.1186/s12885-025-13943-1.
Immune checkpoint inhibitors (ICIs) have revolutionized treatment for advanced lung cancer, yet their cardiotoxicity, particularly immune checkpoint inhibitor-related myocarditis, poses significant clinical challenges. This study aims to create a predictive model using cardiac biomarkers to identify patients prone to myocarditis during treatment, thereby enhancing clinical decision-making and patient outcomes.
In this retrospective cohort study, 1,838 patients with locally advanced and metastatic lung cancer and abnormal baseline cardiac parameters receiving immunotherapy from June 2018 to August 2024 were analyzed, with a follow-up date cutoff of September 20, 2024. Patients were randomly divided into training (70%) and validation (30%) cohorts. Logistic regression analysis was conducted on demographic information, clinical characteristics, treatments, and cardiac parameters of these patients prior to immunotherapy. A nomogram was constructed via multivariable logistic regression, and AUC and Hosmer-Lemeshow tests were performed to verify the accuracy of the model.
Among 1,838 patients, 89 (4.84%) developed myocarditis. Independent predictors included α-HBDH > 910 U/L (OR = 10.57, 95%CI: 2.47-45.22, P = 0.001), CK-MB > 15 ng/mL (OR = 3.87, 95%CI: 1.06-14.11, P = 0.040), hs-cTnT elevation (14-28 pg/mL: OR = 4.19; 28-42 pg/mL: OR = 13.10; >42 pg/mL: OR = 25.43, P < 0.001), NT-proBNP > 3× age-adjusted upper limit (OR = 9.72, 95%CI: 1.09-86.73, P = 0.042), and Caprini score ≥ 4 (OR = 4.49, 95%CI: 2.26-8.90, P < 0.001). The nomogram demonstrated strong discrimination ability, with an AUC of 0.831 in the training cohort (sensitivity: 0.842, specificity: 0.717) and an AUC of 0.844 in the validation cohort.
This study establishes a validated risk assessment model integrating cardiac biomarkers (α-HBDH, CK-MB, hs-cTnT, NT-proBNP) and Caprini risk score to predict ICI-related myocarditis in lung cancer patients with cardiac abnormalities. The tool facilitates early identification of high-risk patients, enabling tailored monitoring and preemptive management. These findings underscore the critical role of baseline cardiac profiling in optimizing immunotherapy safety.
免疫检查点抑制剂(ICIs)彻底改变了晚期肺癌的治疗方式,但其心脏毒性,尤其是免疫检查点抑制剂相关的心肌炎,带来了重大的临床挑战。本研究旨在利用心脏生物标志物创建一个预测模型,以识别治疗期间易患心肌炎的患者,从而改善临床决策和患者预后。
在这项回顾性队列研究中,分析了2018年6月至2024年8月期间接受免疫治疗且基线心脏参数异常的1838例局部晚期和转移性肺癌患者,随访截止日期为2024年9月20日。患者被随机分为训练组(70%)和验证组(30%)。对这些患者免疫治疗前的人口统计学信息、临床特征、治疗情况和心脏参数进行逻辑回归分析。通过多变量逻辑回归构建列线图,并进行AUC和Hosmer-Lemeshow检验以验证模型的准确性。
在1838例患者中,89例(4.84%)发生了心肌炎。独立预测因素包括α-HBDH>910 U/L(OR = 10.57,95%CI:2.47 - 45.22,P = 0.001)、CK-MB>15 ng/mL(OR = 3.87,95%CI:1.06 - 14.11,P = 0.040)、hs-cTnT升高(14 - 28 pg/mL:OR = 4.19;28 - 42 pg/mL:OR = 13.10;>42 pg/mL:OR = 25.43,P <0.001)、NT-proBNP>3×年龄校正上限(OR = 9.72,95%CI:1.09 - 86.73,P = 0.042)以及Caprini评分≥4(OR = 4.49,95%CI:2.26 - 8.90,P <0.001)。列线图显示出强大的区分能力,训练组的AUC为0.831(敏感性:0.842,特异性:0.717),验证组的AUC为0.844。
本研究建立了一个经过验证的风险评估模型,该模型整合了心脏生物标志物(α-HBDH、CK-MB、hs-cTnT、NT-proBNP)和Caprini风险评分,用于预测心脏异常的肺癌患者中与ICI相关的心肌炎。该工具有助于早期识别高危患者,实现针对性监测和预防性管理。这些发现强调了基线心脏评估在优化免疫治疗安全性方面的关键作用。