Suppr超能文献

具有内置逆向仿生学的创新型仿生产品生命周期管理方法框架:从构思到临床验证

Innovative Bionics Product Life-Cycle Management Methodology Framework with Built-In Reverse Biomimetics: From Inception to Clinical Validation.

作者信息

Alemzadeh Kazem

机构信息

School of Electrical, Electronic and Mechanical Engineering, (ESDI) Research Group, University of Bristol, Bristol BS8 1TR, UK.

出版信息

Biomimetics (Basel). 2025 Mar 3;10(3):158. doi: 10.3390/biomimetics10030158.

Abstract

This study uses bionics as an enabling methodology to bridge the gap between biology and engineering for generating innovative designs for implementation into novel technology development. A product lifecycle management (PLM) methodology framework is proposed that uses bionics as a technical discipline. The manuscript presents a novel, reverse biomimetics as a shape abstraction methodology to investigate, analyse, and de-feature biological structures through functional morphology as the enabling methodology for studying the relationships between form and function. The novel reverse engineering (RE) format with eleven stages supports technical biology, addressing the abstraction issues which have been identified as the most difficult steps in Fayemi's eight-step framework. Inverse biomimetics and RE changes functional modelling (FM) from highly abstracted principles to low- or even reality-level abstraction, achieving nature design intents. The goal of the reverse biomimetic approach is to implement functional feature extraction, surface reconstruction, and solid modelling into five stages of a design process. The benefit of virtually mapping this in a pictorial fashion with high-end software fosters a simpler understanding and representation of knowledge transfer from biology to engineering, and can lead to innovative bio-inspired developments. The study aims to present the bionics PLM framework and its comprehensive processes of bionic design and biomimetic modelling, simulation, optimisation, and clinical validation techniques for two large-scale, human skeletal biological systems: a drug-releasing chewing robot and an anthropometric prosthetic hand suitable for introduction to engineering courses. Integration into undergraduate courses would be one route to bolster interest and encourage growth within the subject area in future.

摘要

本研究将仿生学作为一种推动性方法,以弥合生物学与工程学之间的差距,从而生成创新设计,用于新技术开发。本文提出了一种将仿生学作为一门技术学科的产品生命周期管理(PLM)方法框架。该手稿提出了一种新颖的反向仿生学,作为一种形状抽象方法,通过功能形态学来研究、分析和去除生物结构的特征,以此作为研究形态与功能之间关系的推动性方法。具有十一个阶段的新颖逆向工程(RE)形式支持技术生物学,解决了已被确定为法耶米八步框架中最困难步骤的抽象问题。反向仿生学和逆向工程将功能建模(FM)从高度抽象的原理转变为低层次甚至实际层次的抽象,实现自然设计意图。反向仿生方法的目标是将功能特征提取、表面重建和实体建模应用于设计过程的五个阶段。使用高端软件以图形方式对其进行虚拟映射的好处在于,能更简单地理解和呈现从生物学向工程学的知识转移,并且能够带来受生物启发的创新发展。该研究旨在展示仿生学PLM框架及其针对两个大型人体骨骼生物系统的仿生设计与仿生建模、模拟、优化及临床验证技术的综合过程:一个药物释放咀嚼机器人和一个适合引入工程课程的人体测量假手。融入本科课程将是未来增强该学科领域兴趣并鼓励其发展的一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e66/11940181/29f222c71bd0/biomimetics-10-00158-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验