Suppr超能文献

对16周龄雌性C57BL/6J小鼠进行37天的微重力暴露,与负重骨骼部位特有的骨质流失有关。

37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sites.

作者信息

Cahill Rukmani, Blaber Elizabeth A, Juran Cassandra M, Cheng-Campbell Margareth, Alwood Joshua S, Shirazi-Fard Yasaman, Almeida Eduardo A C

机构信息

Blue Marble Space Institute of Science, Seattle, Washington, United States of America.

Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America.

出版信息

PLoS One. 2025 Mar 26;20(3):e0317307. doi: 10.1371/journal.pone.0317307. eCollection 2025.

Abstract

Exposure to weightlessness in microgravity and elevated space radiation are associated with rapid bone loss in mammals, but questions remain about their mechanisms of action and relative importance. In this study, we tested the hypothesis that bone loss during spaceflight in Low Earth Orbit is primarily associated with site-specific microgravity unloading of weight-bearing sites in the skeleton. Microcomputed tomography and histological analyses of bones from mice space flown on ISS for 37 days in the NASA Rodent Research-1 experiment show significant site-specific cancellous and cortical bone loss occurring in the femur, but not in L2 vertebrae. The lack of bone degenerative effects in the spine in combination with same-animal paired losses in the femur suggests that space radiation levels in Low Earth Orbit or other systemic stresses are not likely to significantly contribute to the observed bone loss. Remarkably, spaceflight is also associated with accelerated progression of femoral head endochondral ossification. This suggests the microgravity environment promotes premature progression of secondary ossification during late stages of skeletal maturation at 21 weeks. Furthermore, mice housed in the NASA ISS Rodent Habitat during 1g ground controls maintained or gained bone relative to mice housed in standard vivarium cages that showed significant bone mass declines. These findings suggest that housing in the Rodent Habitat with greater topological enrichment from 3D wire-mesh surfaces may promote increased mechanical loading of weight-bearing bones and maintenance of bone mass. In summary, our results indicate that in female mice approaching skeletal maturity, mechanical unloading of weight-bearing sites is the major cause of bone loss in microgravity, while sites loaded predominantly by muscle activity, such as the spine, appear unaffected. Additionally, we identified early-onset of femoral head epiphyseal plate secondary ossification as a novel spaceflight skeletal unloading effect that may lead to premature long bone growth arrest in microgravity.

摘要

在微重力环境中暴露于失重状态以及空间辐射增强与哺乳动物的快速骨质流失有关,但它们的作用机制和相对重要性仍存在疑问。在本研究中,我们检验了这样一个假设:在低地球轨道进行太空飞行期间的骨质流失主要与骨骼中承重部位的特定部位微重力卸载有关。对在国际空间站上进行37天太空飞行的小鼠骨骼进行的微型计算机断层扫描和组织学分析显示,股骨出现了显著的特定部位松质骨和皮质骨流失,但L2椎骨没有。脊柱缺乏骨质退化效应以及股骨中同一动物的配对骨质流失表明,低地球轨道的空间辐射水平或其他全身应激不太可能对观察到的骨质流失有显著影响。值得注意的是,太空飞行还与股骨头软骨内骨化的加速进展有关。这表明微重力环境促进了21周龄骨骼成熟后期继发性骨化的过早进展。此外,与饲养在标准饲养笼中且骨量显著下降的小鼠相比,在1g地面对照条件下饲养在NASA国际空间站啮齿动物栖息地的小鼠保持或增加了骨量。这些发现表明,饲养在具有来自3D金属丝网表面更大拓扑富集的啮齿动物栖息地中,可能会促进承重骨骼的机械负荷增加和骨量维持。总之,我们的结果表明,在接近骨骼成熟的雌性小鼠中,承重部位的机械卸载是微重力下骨质流失的主要原因,而主要由肌肉活动加载的部位,如脊柱,似乎未受影响。此外,我们确定股骨头骨骺板继发性骨化的早期发生是一种新的太空飞行骨骼卸载效应,可能导致微重力下长骨过早生长停滞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb48/11940681/a16af642b57e/pone.0317307.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验