Schenker Vanessa, Pfister Stephan
Chair of Ecological Systems Design, Swiss Federal Institute of Technology Zurich, Laura-Hezner-Weg 7, CH-8093 Zurich, Switzerland.
Environ Sci Technol. 2025 Apr 8;59(13):6543-6555. doi: 10.1021/acs.est.4c12619. Epub 2025 Mar 26.
Lithium (Li) is essential for decarbonization strategies, such as electric vehicles and renewable energy storage, which experiences the largest growth rates among metals required for low-carbon technologies. To meet this demand, the raw materials sector must increase current capacities and develop new capacities at untapped deposits. Understanding life cycle impacts is crucial to avoid severe environmental burden shifts in the future. Although site-specific life cycle inventories exist, they do not allow for a comprehensive global assessment of the Li sector, particularly in capturing technological developments. To address this, our study presents a life cycle inventory model for brines that maintains essential site-specific parameters while providing a global perspective. We define core parameters for site-specific modeling of Li carbonate (LiCO) production and develop a systematic approach to addressing data gaps. Our model employs a class-based structure for 30 mapped processes from the literature and quantifies environmental and technical flows. Overall, we cover 25 sites, representing 300 kilotonnes (90%) of current LiCO production from brines and an additional 315 kilotonnes of potential future production. One key finding is that sites using direct Li extraction have 7-fold higher climate change impacts than sites using conventional technologies on average, while water scarcity impacts are doubled on average. The difference is a result of the larger brine mass required to be treated due to lower Li grades. Furthermore, our model allows the implications for Li-ion battery production to be analyzed.
锂(Li)对于脱碳战略至关重要,例如电动汽车和可再生能源存储,在低碳技术所需的金属中,锂的增长率最高。为满足这一需求,原材料部门必须提高现有产能,并在未开发的矿床开发新产能。了解生命周期影响对于避免未来严重的环境负担转移至关重要。尽管存在特定场地的生命周期清单,但它们无法对锂行业进行全面的全球评估,尤其是在捕捉技术发展方面。为解决这一问题,我们的研究提出了一种卤水生命周期清单模型,该模型在保持基本特定场地参数的同时提供全球视角。我们定义了碳酸锂(LiCO)生产特定场地建模的核心参数,并开发了一种系统方法来解决数据缺口。我们的模型采用基于类的结构,对文献中的30个映射过程进行建模,并量化环境和技术流。总体而言,我们涵盖了25个场地,占目前卤水碳酸锂产量的300千吨(90%)以及未来潜在产量的315千吨。一个关键发现是,平均而言,使用直接锂提取的场地的气候变化影响比使用传统技术的场地高7倍,而水资源短缺影响平均增加一倍。这种差异是由于锂品位较低需要处理的卤水量更大所致。此外,我们的模型还可以分析对锂离子电池生产的影响。