Suppr超能文献

逻辑回归与机器学习方法在预测抑郁症状中的比较:一项基于全国的研究。

Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study.

作者信息

Dong Xing-Xuan, Liu Jian-Hua, Zhang Tian-Yang, Pan Chen-Wei, Zhao Chun-Hua, Wu Yi-Bo, Chen Dan-Dan

机构信息

School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.

Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China.

出版信息

Psychiatry Investig. 2025 Mar;22(3):267-278. doi: 10.30773/pi.2024.0156. Epub 2025 Mar 18.

Abstract

OBJECTIVE

Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.

METHODS

Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).

RESULTS

LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.

CONCLUSION

Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.

摘要

目的

据报道,机器学习(ML)比传统统计技术具有更好的预测能力。本研究的目的是评估ML算法和逻辑回归(LR)在预测2019冠状病毒病大流行期间抑郁症状方面的有效性。

方法

在一项涉及21916名参与者的全国性横断面研究中进行分析。本研究中的ML算法包括随机森林(RF)、支持向量机(SVM)、神经网络(NN)和梯度提升机(GBM)方法。性能指标包括敏感性、特异性、准确性、精确性、F1分数和受试者工作特征曲线下面积(AUC)。

结果

就AUC而言,LR和NN表现最佳。除RF外,大多数ML模型的过拟合风险可忽略不计,GBM获得了最高的敏感性、特异性、准确性、精确性和F1分数。因此,LR、NN和GBM模型位列最佳模型之中。

结论

与ML模型相比,LR模型在预测抑郁症状和识别潜在风险因素方面与ML模型表现相当,同时过拟合风险更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f31f/11962532/028c6ea62395/pi-2024-0156f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验