Suppr超能文献

基于小波变换和一维卷积神经网络的地表水水质污染预测

Prediction of surface water pollution using wavelet transform and 1D-CNN.

作者信息

Wang Gaofeng, Zhang Hao, Gao Man, Zhou Tao, Qian Yun

机构信息

College of Electrical and Information Engineering, Beihua University, Jilin 132021, China.

Qiqihar Sub-center, Heilongjiang Provincial Hydrology and Water Resources Center, Qiqihar 161005, China.

出版信息

Water Sci Technol. 2025 Mar;91(6):684-697. doi: 10.2166/wst.2025.032. Epub 2025 Mar 4.

Abstract

Permanganate index (COD), total nitrogen, and ammonia nitrogen are important indicators that represent the degree of pollution of surface water. This study combined ultraviolet-visible (UV-vis) spectroscopy with a one-dimensional convolutional neural network (1D-CNN) to spectrally analyze 708 samples with different concentrations. The wavelet transform was used to preprocess the spectra to improve the model's accuracy. The results show the best prediction results using a fixed threshold (sqtwolog) of wavelets in combination with 1D-CNN, and the coefficient of determination () values of the models on the test dataset all reached more than 0.98. A comparison between the backpropagation neural network model and the extreme learning machine model reveals that the 1D-CNN model has better prediction accuracy and robustness. The experimental results show the strong practical value of using 1D-CNN to predict the levels of different compounds in surface water.

摘要

高锰酸盐指数(COD)、总氮和氨氮是表征地表水污染程度的重要指标。本研究将紫外可见(UV-vis)光谱与一维卷积神经网络(1D-CNN)相结合,对708个不同浓度的样品进行光谱分析。采用小波变换对光谱进行预处理,以提高模型的准确性。结果表明,使用固定阈值(sqtwolog)的小波与1D-CNN相结合时预测效果最佳,测试数据集上模型的决定系数()值均达到0.98以上。反向传播神经网络模型与极限学习机模型的比较表明,1D-CNN模型具有更好的预测准确性和鲁棒性。实验结果表明,使用1D-CNN预测地表水中不同化合物的含量具有很强的实用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验