Suppr超能文献

通过适当的预处理增强骨放射学图像分类:一种深度学习和可解释人工智能方法。

Enhancing bone radiology images classification through appropriate preprocessing: a deep learning and explainable artificial intelligence approach.

作者信息

Wu Yaoyang, Fong Simon, Yu Jiahui

机构信息

Department of Computer and Information Science, University of Macau, Macau, China.

出版信息

Quant Imaging Med Surg. 2025 Mar 3;15(3):2529-2546. doi: 10.21037/qims-24-1745. Epub 2025 Jan 17.

Abstract

BACKGROUND

Medical image classification has been an important application for deep learning techniques for over a decade, and since the emergence of explainable artificial intelligence (XAI), researchers have started using XAI to validate the results produced by these black box models. In the research field, it has become clear that accuracy and efficiency are not the only crucial factors for developing medical deep learning models; the authenticity of results and the accountability of the model and its creator also matter greatly. The objective of this study is to emphasize the importance of authenticity of the results and the accountability of deep learning models used for medical purposes, through proposing targeted preprocessing method for medical dataset processed by deep learning models.

METHODS

In this paper we conduct comparison experiments on processing two bone radiology image datasets using various deep learning neural networks, while emphasizing on the effect of appropriate preprocessing methods for the dataset towards the models' prediction performance. Comparisons are conducted both horizontally, between performance of different neural networks; and vertically, of using same models processing datasets before and after going through appropriate preprocessing procedures. Furthermore, we evaluate the experimental results not only quantitatively, but also visually by using XAI techniques, in order to determine the reasonability and reliability of the predictions from the experiments.

RESULTS

Results showed that for the bone radiology image dataset used for our experiment, among the five comparison models, DenseNet201 achieved the highest validation accuracy of 78%. Using the same models to process the abovementioned dataset after conducting appropriate preprocessing procedures, performance for all models have increased by an average of 0.06. Using XAI technique to evaluate the comparison results for before/after preprocessing experiments, we could observe that the appropriate preprocessing method effectively helped the models to concentrate on the abnormality areas on the radiology images comparing to processing raw images.

CONCLUSIONS

The novelty of this paper lies in its specific application of extended preprocessing techniques-namely, the removal of background and irrelevant parts-to medical images for improving the performance of deep learning models in classification tasks. While the concept of preprocessing images has been explored by many researchers, applying such targeted preprocessing steps to medical images, combined with the use of XAI to validate and illustrate the benefits, is a novel approach. This paper highlights the unique requirements of medical image data and proposes an innovative method to enhance model accuracy and reliability in medical diagnostics by removing background and redundant features from the images.

摘要

背景

十多年来,医学图像分类一直是深度学习技术的一项重要应用,自可解释人工智能(XAI)出现以来,研究人员已开始使用XAI来验证这些黑箱模型产生的结果。在研究领域,已很明确的是,准确性和效率并非开发医学深度学习模型的唯一关键因素;结果的真实性以及模型及其创建者的可问责性也至关重要。本研究的目的是通过为深度学习模型处理的医学数据集提出有针对性的预处理方法,来强调医学用途深度学习模型结果真实性和可问责性的重要性。

方法

在本文中,我们使用各种深度学习神经网络对两个骨骼放射影像数据集进行处理的比较实验,同时强调针对数据集的适当预处理方法对模型预测性能的影响。比较在不同神经网络的性能之间水平进行;以及在使用相同模型处理经过适当预处理程序前后的数据集之间垂直进行。此外,我们不仅通过定量方式评估实验结果,还使用XAI技术进行可视化评估,以确定实验预测的合理性和可靠性。

结果

结果表明,对于我们实验中使用的骨骼放射影像数据集,在五个比较模型中,DenseNet201实现了最高的验证准确率,为78%。在进行适当预处理程序后使用相同模型处理上述数据集,所有模型的性能平均提高了0.06。使用XAI技术评估预处理前后实验的比较结果,我们可以观察到,与处理原始图像相比,适当的预处理方法有效地帮助模型专注于放射影像上的异常区域。

结论

本文的新颖之处在于将扩展预处理技术(即去除背景和无关部分)具体应用于医学图像,以提高深度学习模型在分类任务中的性能。虽然许多研究人员已探索了图像预处理的概念,但将此类有针对性的预处理步骤应用于医学图像,并结合使用XAI来验证和说明其益处,是一种新颖的方法。本文突出了医学图像数据的独特要求,并提出了一种创新方法,通过从图像中去除背景和冗余特征来提高医学诊断中模型的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3302/11948367/10eb8b061273/qims-15-03-2529-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验