Zhang Jisheng, Chen Yang, Zhang Aijun, Yang Yi, Ma Liqian, Meng Hangqi, Wu Jintao, Zhu Kean, Zhang Jiangsong, Lin Ke, Lin Xianming
The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Jiaxing First People's Hospital, Jiaxing, China.
Front Med (Lausanne). 2025 Mar 13;12:1529993. doi: 10.3389/fmed.2025.1529993. eCollection 2025.
Long COVID significantly affects patients' quality of life, yet no standardized treatment has been established. Traditional Chinese Medicine (TCM) presents a promising potential approach with targeted therapeutic strategies. This study aims to develop an explainable machine learning (ML) model and nomogram to identify Long COVID patients who may benefit from TCM, enhancing clinical decision-making.
We analyzed data from 1,331 Long COVID patients treated with TCM between December 2022 and February 2024 at three hospitals in Zhejiang, China. Effectiveness was defined as improvement in two or more symptoms or a minimum 2-point increase in the Traditional Chinese Medicine Syndrome Score (TCMSS). Data included 11 patient and disease characteristics, 18 clinical symptoms and syndrome scores, and 12 auxiliary examination indicators. The least absolute shrinkage and selection operator (LASSO) method identified features linked to TCM efficacy. Data from 1,204 patients served as the training set, while 127 patients formed the testing set.
We employed five ML algorithms: Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), and Neural Network (NN). The XGBoost model achieved an Area Under the Curve (AUC) of 0.9957 and an F1 score of 0.9852 in the training set, demonstrating superior performance in the testing set with an AUC of 0.9059 and F1 score of 0.9027. Key features identified through SHapley Additive exPlanations (SHAP) included chest tightness, aversion to cold, age, TCMSS, Short Form (36) Health Survey (SF-36), C-reactive protein (CRP), and lymphocyte ratio. The logistic regression-based nomogram demonstrated an AUC of 0.9479 and F1 score of 0.9384 in the testing set.
This study utilized multicenter data and multiple ML algorithms to create a ML model for predicting TCM efficacy in Long COVID treatment. Furthermore, a logistic regression-based nomogram was developed to assist the model and improve decision-making efficiency in TCM applications for Long COVID management.
长期新冠对患者的生活质量有显著影响,但尚未建立标准化治疗方法。中医提供了一种有前景的潜在方法及针对性治疗策略。本研究旨在开发一种可解释的机器学习(ML)模型和列线图,以识别可能从中医治疗中获益的长期新冠患者,增强临床决策。
我们分析了2022年12月至2024年2月期间在中国浙江三家医院接受中医治疗的1331例长期新冠患者的数据。疗效定义为两种或更多症状改善或中医证候评分(TCMSS)至少提高2分。数据包括11项患者和疾病特征、18项临床症状和证候评分以及12项辅助检查指标。最小绝对收缩和选择算子(LASSO)方法确定了与中医疗效相关的特征。1204例患者的数据用作训练集,127例患者组成测试集。
我们采用了五种机器学习算法:支持向量机(SVM)、随机森林(RF)、K近邻(KNN)、极端梯度提升(XGBoost)和神经网络(NN)。XGBoost模型在训练集中的曲线下面积(AUC)为0.9957,F1分数为0.9852,在测试集中表现优异,AUC为0.9059,F1分数为0.9027。通过夏普利值加法解释(SHAP)确定的关键特征包括胸闷、恶寒、年龄、TCMSS、简明健康调查量表(SF - 36)、C反应蛋白(CRP)和淋巴细胞比例。基于逻辑回归的列线图在测试集中的AUC为0.9479,F1分数为0.9384。
本研究利用多中心数据和多种机器学习算法创建了一个用于预测中医治疗长期新冠疗效的机器学习模型。此外,还开发了基于逻辑回归的列线图来辅助该模型,并提高中医在长期新冠管理应用中的决策效率。