Garcia Nellie, Reitz Silvie, Handy Gregory
School of Mathematics, University of Minnesota, 127 Vincent Hall 206 Church St. SE, Minneapolis, MN, 55455, USA.
Bull Math Biol. 2025 Apr 4;87(5):63. doi: 10.1007/s11538-025-01438-w.
Recent experimental evidence has shown that glial cells, including microglia and astrocytes, can ensheathe specific synapses, positioning them to disrupt neurotransmitter flow between pre- and post-synaptic terminals. This study, as part of the special issue "Problems, Progress and Perspectives in Mathematical and Computational Biology," expands micro- and network-scale theoretical frameworks to incorporate these new experimental observations that introduce substantial heterogeneities into the system. Specifically, we aim to explore how varying degrees of synaptic ensheathment affect synaptic communication and network dynamics. Consistent with previous studies, our microscale model shows that ensheathment accelerates synaptic transmission while reducing its strength and reliability, with the potential to effectively switch off synaptic connections. Building on these findings, we integrate an "effective" glial cell model into a large-scale neuronal network. Specifically, we analyze a network with highly heterogeneous synaptic strengths and time constants, where glial proximity parametrizes synaptic properties. This parametrization results in a multimodal distribution of synaptic parameters across the network, introducing significantly greater variability compared to previous modeling efforts that assumed a normal distribution. This framework is applied to large networks of exponential integrate-and-fire neurons, extending linear response theory to analyze not only firing rate distributions but also noise correlations across the network. Despite the significant heterogeneity in the system, a mean-field approximation accurately captures network statistics. We demonstrate the utility of our model by reproducing experimental findings, showing that microglial ensheathment leads to post-anesthesia hyperactivity in excitatory neurons of mice. Furthermore, we explore how glial ensheathment may be used in the visual cortex to target specific neuronal subclasses, tuning higher-order network statistics.
最近的实验证据表明,包括小胶质细胞和星形胶质细胞在内的神经胶质细胞可以包裹特定的突触,使其定位以破坏突触前和突触后终端之间的神经递质流动。作为“数学与计算生物学中的问题、进展与展望”特刊的一部分,本研究扩展了微观和网络尺度的理论框架,以纳入这些将大量异质性引入系统的新实验观察结果。具体而言,我们旨在探索不同程度的突触包裹如何影响突触通信和网络动态。与先前的研究一致,我们的微观模型表明,包裹会加速突触传递,同时降低其强度和可靠性,有可能有效地切断突触连接。基于这些发现,我们将一个“有效”的神经胶质细胞模型整合到一个大规模神经元网络中。具体来说,我们分析了一个具有高度异质突触强度和时间常数的网络,其中神经胶质细胞的接近程度参数化了突触特性。这种参数化导致整个网络中突触参数的多峰分布,与之前假设正态分布的建模工作相比,引入了显著更大的变异性。该框架应用于指数积分发放神经元的大型网络,扩展了线性响应理论,不仅可以分析发放率分布,还可以分析整个网络中的噪声相关性。尽管系统中存在显著的异质性,但平均场近似准确地捕捉了网络统计信息。我们通过重现实验结果来证明我们模型的实用性,表明小胶质细胞包裹会导致小鼠兴奋性神经元在麻醉后出现多动。此外,我们探索了神经胶质细胞包裹如何在视觉皮层中用于靶向特定的神经元亚类,调节高阶网络统计信息。