Akter Yeasmin, Jones Grace, Daskivich Grant J, Shifflett Victoria, Vargas Karina J, Hruska Martin
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America.
Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS Biol. 2025 Apr 4;23(4):e3002649. doi: 10.1371/journal.pbio.3002649. eCollection 2025 Apr.
The discovery of synaptic nanostructures revealed key insights into the molecular logic of synaptic function and plasticity. Yet, our understanding of how diverse synapses in the brain organize their nano-architecture remains elusive, largely due to the limitations of super-resolution imaging in complex brain tissue. Here, we characterized single-domain camelid nanobodies for the 3D quantitative multiplex imaging of synaptic nano-organization using tau-STED nanoscopy in cryosections from the mouse primary somatosensory cortex. We focused on thalamocortical (TC) and corticocortical (CC) synapses along the apical-basal axis of layer five pyramidal neurons as models of functionally diverse glutamatergic synapses in the brain. Spines receiving TC input were larger than those receiving CC input in all layers examined. However, the nano-architecture of TC synapses varied with dendritic location. TC afferents on apical dendrites frequently contacted spines with multiple aligned PSD-95/Bassoon nanomodules of constant size. In contrast, TC spines on basal dendrites predominantly contained a single aligned nanomodule, with PSD-95 nanocluster sizes scaling proportionally with spine volume. The nano-organization of CC synapses did not change across cortical layers and resembled modular architecture defined in vitro. These findings highlight the nanoscale diversity of synaptic architecture in the brain, that is, shaped by both the source of afferent input and the subcellular localization of individual synaptic contacts.
突触纳米结构的发现揭示了对突触功能和可塑性分子逻辑的关键见解。然而,我们对大脑中各种突触如何组织其纳米结构的理解仍然难以捉摸,这主要是由于复杂脑组织中超分辨率成像的局限性。在这里,我们使用来自小鼠初级体感皮层冷冻切片的tau-STED纳米显微镜,对用于突触纳米组织3D定量多重成像的单域骆驼科纳米抗体进行了表征。我们聚焦于沿第五层锥体神经元顶-基轴的丘脑皮质(TC)和皮质皮质(CC)突触,将其作为大脑中功能多样的谷氨酸能突触模型。在所有检查的层中,接受TC输入的棘突比接受CC输入的棘突更大。然而,TC突触的纳米结构随树突位置而变化。顶树突上的TC传入纤维经常与具有多个大小恒定且排列整齐的PSD-95/巴松管纳米模块的棘突接触。相比之下,基树突上的TC棘突主要包含单个排列整齐的纳米模块,PSD-95纳米簇大小与棘突体积成比例缩放。CC突触的纳米组织在各皮层中没有变化,类似于体外定义的模块化结构。这些发现突出了大脑中突触结构的纳米级多样性,即由传入输入的来源和单个突触接触的亚细胞定位共同塑造。