Suppr超能文献

整合可解释机器学习与多组学系统生物学用于阿尔茨海默病个性化生物标志物发现及药物再利用

Integrating Interpretable Machine Learning and Multi-omics Systems Biology for Personalized Biomarker Discovery and Drug Repurposing in Alzheimer's Disease.

作者信息

Mottaqi Mohammadsadeq, Zhang Pengyue, Xie Lei

机构信息

Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, 10016, NY, USA.

Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, 46202, IN, USA.

出版信息

bioRxiv. 2025 Mar 28:2025.03.24.644676. doi: 10.1101/2025.03.24.644676.

Abstract

BACKGROUND

Alzheimer's disease (AD) is a complex neurodegenerative disorder with substantial molecular variability across different brain regions and individuals, hindering therapeutic development. This study introduces PRISM-ML, an interpretable machine learning (ML) framework integrating multiomics data to uncover patient-specific biomarkers, subtissue-level pathology, and drug repurposing opportunities.

METHODS

We harmonized transcriptomic and genomic data of three independent brain studies containing 2105 post-mortem brain samples (1363 AD, 742 controls) across nine tissues. A Random Forest classifier with SHapley Additive exPlanations (SHAP) identified patient-level biomarkers. Clustering further delineated each tissue into subtissues, and network analysis revealed critical "bottleneck" (hub) genes. Finally, a knowledge graph-based screening identified multi-target drug candidates, and a real-world pharmacoepidemiologic study evaluated their clinical relevance.

RESULTS

We uncovered 36 molecularly distinct subtissues, each defined by a set of associated unique biomarkers and genetic drivers. Through network analysis of gene-gene interactions networks, we highlighted 262 bottleneck genes enriched in synaptic, cytoskeletal, and membrane-associated processes. Knowledge graph queries identified six FDA-approved drugs predicted to target multiple bottleneck genes and AD-relevant pathways simultaneously. One candidate, promethazine, demonstrated an association with reduced AD incidence in a large healthcare dataset of over 364000 individuals (hazard ratios ≤ 0.43; < 0.001). These findings underscore the potential for multi-target approaches, reveal connections between AD and cardiovascular pathways, and offer novel insights into the heterogeneous biology of AD.

CONCLUSIONS

PRISM-ML bridges interpretable ML with multi-omics and systems biology to decode AD heterogeneity, revealing region-specific mechanisms and repurposable therapeutics. The validation of promethazine in real-world data underscores the clinical relevance of multi-target strategies, paving the way for more personalized treatments in AD and other complex disorders.

摘要

背景

阿尔茨海默病(AD)是一种复杂的神经退行性疾病,在不同脑区和个体之间存在显著的分子变异性,这阻碍了治疗方法的开发。本研究引入了PRISM-ML,这是一个可解释的机器学习(ML)框架,整合了多组学数据,以发现患者特异性生物标志物、亚组织水平的病理学特征以及药物再利用机会。

方法

我们整合了三项独立脑研究的转录组和基因组数据,这些研究包含来自九个组织的2105份死后脑样本(1363例AD患者,742例对照)。使用带有SHapley加性解释(SHAP)的随机森林分类器识别患者水平的生物标志物。聚类进一步将每个组织划分为亚组织,网络分析揭示了关键的“瓶颈”(枢纽)基因。最后,基于知识图谱的筛选确定了多靶点药物候选物,一项真实世界的药物流行病学研究评估了它们的临床相关性。

结果

我们发现了36个分子上不同的亚组织,每个亚组织由一组相关的独特生物标志物和遗传驱动因素定义。通过对基因-基因相互作用网络的网络分析,我们突出了262个富集于突触、细胞骨架和膜相关过程的瓶颈基因。知识图谱查询确定了六种FDA批准的药物,预计这些药物可同时靶向多个瓶颈基因和与AD相关的途径。在一个超过364000人的大型医疗数据集(风险比≤0.43;P<0.001)中,一种候选药物异丙嗪显示出与AD发病率降低有关。这些发现强调了多靶点方法的潜力,揭示了AD与心血管途径之间的联系,并为AD的异质性生物学提供了新的见解。

结论

PRISM-ML将可解释的ML与多组学和系统生物学相结合,以解码AD的异质性,揭示区域特异性机制和可再利用的治疗方法。异丙嗪在真实世界数据中的验证强调了多靶点策略的临床相关性,为AD和其他复杂疾病更个性化的治疗铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cda/11974764/6aee6164a5c7/nihpp-2025.03.24.644676v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验