Suppr超能文献

一种利用内镜超声检查区分小的和微小的胃间质瘤与胃平滑肌瘤的人工智能模型。

An artificial intelligence model utilizing endoscopic ultrasonography for differentiating small and micro gastric stromal tumors from gastric leiomyomas.

作者信息

Duan Ruifeng, Duan Liwei, Chen Xin, Liu Min, Song Xiangyi, Wei Lijuan

机构信息

Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.

出版信息

BMC Gastroenterol. 2025 Apr 9;25(1):237. doi: 10.1186/s12876-025-03825-y.

Abstract

BACKGROUND

Gastric stromal tumors (GSTs) and gastric leiomyomas (GLs) represent the primary subtypes of gastric submucosal tumors (SMTs) characterized by distinct biological characteristics and treatment modalities. The accurate differentiation between GSTs and GLs poses a significant clinical challenge. Recent advancements in artificial intelligence (AI) leveraging endoscopic ultrasonography (EUS) have demonstrated promising results in the categorization of larger-diameter SMTs (> 2.0 cm). However, the diagnostic capacity of AI models for micro-diameter SMTs (< 1.0 cm) remains uncertain due to limited imaging features. This study seeks to develop a specialized diagnostic model utilizing EUS images to differentiate small and micro GSTs from GLs effectively.

METHODS

In this study, a dataset comprising 358 EUS images of GSTs or GLs was utilized for training the EUS-AI model. Subsequently, 216 EUS images were allocated for validation purposes, with 159 images in validation set 1 (micro SMTs: tumor diameter < 1.0 cm) and 216 images in validation set 2 (small SMTs: tumor diameter < 2.0 cm). The diagnostic performance of the EUS-AI model for individual tumors was assessed by consolidating the diagnostic outcomes of the corresponding images. Comparative analyses were conducted between the diagnostic outcomes of endoscopists, clinical signatures, and those of the EUS-AI models.

RESULTS

The EUS-AI models were developed using DenseNet201, ResNet50, and VGG19 architectures. Among the three models, the ResNet50 model demonstrated superior performance on EUS images, achieving area under the curve (AUC) values of 0.938, 0.832, and 0.841 in the training set, validation set 1, and validation set 2, respectively. By combining predictions from multiple images for each tumor, the diagnostic efficacy of ResNet50 was further enhanced, resulting in AUCs of 0.994, 0.911, and 0.915 in the aforementioned sets. In comparison, both clinical signatures and endoscopists exhibited notably lower AUC values than those obtained with the EUS-AI model.

CONCLUSIONS

The EUS-AI model utilizing ResNet50 architecture effectively discriminates between micro GSTs and GLs from both image-centric and tumor-centric perspectives. Demonstrating superior diagnostic efficiency compared to clinical models and assessments by endoscopists, the EUS-AI model serves as a valuable tool for clinicians in precisely distinguishing small and micro GSTs from GLs before surgery.

摘要

背景

胃间质瘤(GSTs)和平滑肌瘤(GLs)是胃黏膜下肿瘤(SMTs)的主要亚型,具有不同的生物学特性和治疗方式。准确区分GSTs和GLs是一项重大的临床挑战。利用人工智能(AI)结合内镜超声(EUS)的最新进展在大直径SMTs(>2.0 cm)的分类中显示出了有前景的结果。然而,由于成像特征有限,AI模型对微直径SMTs(<1.0 cm)的诊断能力仍不确定。本研究旨在开发一种利用EUS图像的专门诊断模型,以有效区分小GSTs和微GSTs与GLs。

方法

在本研究中,一个包含358张GSTs或GLs的EUS图像的数据集被用于训练EUS-AI模型。随后,216张EUS图像被分配用于验证目的,验证集1中有159张图像(微SMTs:肿瘤直径<1.0 cm),验证集2中有216张图像(小SMTs:肿瘤直径<2.0 cm)。通过整合相应图像的诊断结果来评估EUS-AI模型对单个肿瘤的诊断性能。在内镜医师的诊断结果、临床特征与EUS-AI模型的诊断结果之间进行了比较分析。

结果

EUS-AI模型使用DenseNet201、ResNet50和VGG19架构开发。在这三个模型中,ResNet50模型在EUS图像上表现出卓越的性能,在训练集、验证集1和验证集2中的曲线下面积(AUC)值分别达到0.938、0.832和0.841。通过对每个肿瘤的多张图像预测进行组合,ResNet50的诊断效能进一步提高,在上述集合中的AUC分别为0.994、0.911和0.915。相比之下,临床特征和内镜医师的AUC值均显著低于EUS-AI模型。

结论

利用ResNet50架构的EUS-AI模型从以图像为中心和以肿瘤为中心的角度有效地鉴别了微GSTs和GLs。与临床模型和内镜医师的评估相比,EUS-AI模型显示出卓越的诊断效率,是临床医生在手术前精确区分小GSTs和微GSTs与GLs的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e6b/11983923/6be63279fae6/12876_2025_3825_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验