Liu Fujia, Yan Yuyi, Tang Weichen, Qie Boyu, Chen Jieqi, Wang Ziyi, Louie Steven G, Fischer Felix R
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Department of Physics, University of California, Berkeley, California 94720, United States.
ACS Nano. 2025 Apr 22;19(15):15139-15147. doi: 10.1021/acsnano.5c03671. Epub 2025 Apr 10.
Electron band degeneracies in momentum space give rise to exotic quantum phenomena that have sparked intense interest in condensed matter physics and materials science. Nodal-lines─isolines in -space formed by the incidental touching of two bands that share the same energy but belong to discrete eigenstates─arise in the presence of symmetries that preclude effective hybridization. Despite recent advances in the design, bottom-up assembly, and engineering of exotic electronic states in graphene nanomaterials, the extension of this approach to access synthetic two-dimensional (2D) quantum materials derived from metal- or covalent-organic frameworks (COFs) has lagged behind. Here we present a molecular orbital engineering approach for designing and fabricating an edge-centered dual square lattice within a π-conjugated 2D-tetraoxa[8]circulene (2D-TOC) COF. First-principles calculations and scanning tunnelling spectroscopy reveal the emergence of Frontier states at the center of a 3 × 3 lattice that give rise to Dirac nodal-lines in 2D-TOC. Our findings not only provide a general guide for the design of conjugated COFs with custom tailored electronic properties from molecular fragments but enable the exploration of emergent topological phenomena in synthetic 2D materials with potential application for high-speed, low-power data processing, transmission, and storage.
动量空间中的电子能带简并会引发奇异的量子现象,这在凝聚态物理和材料科学领域引发了强烈关注。节线(nodal-line)是动量空间中由两条具有相同能量但属于离散本征态的能带偶然接触形成的等值线,它出现在阻止有效杂化的对称性存在的情况下。尽管最近在石墨烯纳米材料中奇异电子态的设计、自下而上组装和工程方面取得了进展,但将这种方法扩展到获取源自金属或共价有机框架(COF)的合成二维(2D)量子材料方面却落后了。在此,我们提出一种分子轨道工程方法,用于在π共轭二维四氧杂[8]轮烯(2D-TOC)COF中设计和制造边缘中心双方格晶格。第一性原理计算和扫描隧道光谱揭示了在3×3晶格中心出现的前沿态,这些前沿态在2D-TOC中产生了狄拉克节线。我们的发现不仅为从分子片段设计具有定制电子特性的共轭COF提供了一般指导,还能探索合成二维材料中出现的拓扑现象,这些现象在高速、低功耗数据处理、传输和存储方面具有潜在应用。