Singh Yashbir, Faghani Shahriar, Eaton John E, Venkatesh Sudhakar K, Erickson Bradley J
Department of Radiology, Mayo Clinic, Rochester, MN.
Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN.
Mayo Clin Proc Digit Health. 2024 Jul 31;2(3):470-476. doi: 10.1016/j.mcpdig.2024.07.002. eCollection 2024 Sep.
To investigate a deep learning model for predicting hepatic decompensation using computed tomography (CT) imaging in patients with primary sclerosing cholangitis (PSC).
Retrospective cohort study involving 277 adult patients with large-duct PSC who underwent an abdominal CT scan. The portal venous phase CT images were used as input to a 3D-DenseNet121 model, which was trained using 5-fold crossvalidation to classify hepatic decompensation. To further investigate the role of each anatomic region in the model's decision-making process, we trained the model on different sections of 3-dimensional CT images. This included training on the right, left, anterior, posterior, inferior, and superior halves of the image data set. For each half, as well as for the entire scan, we performed area under the receiving operating curve (AUROC) analysis.
Hepatic decompensation occurred in 128 individuals after a median (interquartile range) of 1.5 years (142-1318 days) after the CT scan. The deep learning model exhibited promising results, with a mean ± SD AUROC of 0.89±0.04 for the baseline model. The mean ± SD AUROC for left, right, anterior, posterior, superior, and inferior halves were 0.83±0.03, 0.83±0.03, 0.82±0.09, 0.79±0.02, 0.78±0.02, and 0.76±0.04, respectively.
The study illustrates the potential of examining CT imaging using 3D-DenseNet121 deep learning model to predict hepatic decompensation in patients with PSC.
研究一种使用计算机断层扫描(CT)成像预测原发性硬化性胆管炎(PSC)患者肝失代偿的深度学习模型。
回顾性队列研究,纳入277例接受腹部CT扫描的成年大胆管PSC患者。门静脉期CT图像用作3D-DenseNet121模型的输入,该模型采用5折交叉验证进行训练以对肝失代偿进行分类。为进一步研究每个解剖区域在模型决策过程中的作用,我们在三维CT图像的不同部分上训练模型。这包括在图像数据集的右半部分、左半部分、前半部分、后半部分、下半部分和上半部分进行训练。对于每个部分以及整个扫描,我们进行了受试者操作特征曲线下面积(AUROC)分析。
在CT扫描后的中位时间(四分位间距)1.5年(142 - 1318天)后,128例患者发生了肝失代偿。深度学习模型显示出有前景的结果,基线模型的平均±标准差AUROC为0.89±0.04。左半部分、右半部分、前半部分、后半部分、上半部分和下半部分的平均±标准差AUROC分别为0.83±0.03、0.83±0.03、0.82±0.09、0.79±0.02、0.78±0.02和0.76±0.04。
该研究说明了使用3D-DenseNet121深度学习模型检查CT成像以预测PSC患者肝失代偿的潜力。