Han Fue, Zhang Hongwei, Zhang Jingnan
School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
Nanomaterials (Basel). 2025 Apr 3;15(7):544. doi: 10.3390/nano15070544.
The spherical nanoindentation macroscopic stress-macroscopic strain relationship of hierarchical honeycomb nanoporous material is defined by combining the spherical nanoindentation simulation and the uniaxial compression simulation. At the same time, the macroscopic elastic modulus and the macroscopic yielding stress of the hierarchical material are obtained from the curves through different methods. The results show that the macroscopic stress-macroscopic strain curve of the hierarchical nanoporous materials nanoindented to a depth of 30 nm is basically consistent with the curve of the hierarchical nanoporous materials when uniaxially compressed down to 25 nm. Through the nanoindentation and uniaxial compression, the macroscopic elastic moduli and the macroscopic yielding stresses are also close to the scale formula.
通过结合球形纳米压痕模拟和单轴压缩模拟,定义了分层蜂窝状纳米多孔材料的球形纳米压痕宏观应力-宏观应变关系。同时,通过不同方法从曲线中获得了分层材料的宏观弹性模量和宏观屈服应力。结果表明,纳米压痕至30nm深度的分层纳米多孔材料的宏观应力-宏观应变曲线与单轴压缩至25nm时的分层纳米多孔材料曲线基本一致。通过纳米压痕和单轴压缩,宏观弹性模量和宏观屈服应力也接近尺度公式。