Suppr超能文献

相似文献

1
Unsupervised learning of structural relaxation in supercooled liquids from short-term fluctuations.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2427246122. doi: 10.1073/pnas.2427246122. Epub 2025 Apr 11.
2
Autonomously revealing hidden local structures in supercooled liquids.
Nat Commun. 2020 Oct 30;11(1):5479. doi: 10.1038/s41467-020-19286-8.
3
Averaging Local Structure to Predict the Dynamic Propensity in Supercooled Liquids.
Phys Rev Lett. 2021 Aug 20;127(8):088007. doi: 10.1103/PhysRevLett.127.088007.
4
Do short-time fluctuations predict the long-time dynamic heterogeneity in a supercooled liquid?
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011502. doi: 10.1103/PhysRevE.76.011502. Epub 2007 Jul 2.
6
Predicting Dynamic Heterogeneity in Glass-Forming Liquids by Physics-Inspired Machine Learning.
Phys Rev Lett. 2023 Jun 9;130(23):238202. doi: 10.1103/PhysRevLett.130.238202.
7
Assessing the structural heterogeneity of supercooled liquids through community inference.
J Chem Phys. 2020 Apr 14;152(14):144502. doi: 10.1063/5.0004732.
8
Influence of Density and Pressure on Glass Formation in the Kob-Andersen Model.
J Phys Chem B. 2024 Oct 10;128(40):9889-9904. doi: 10.1021/acs.jpcb.4c04721. Epub 2024 Oct 1.
9
Viscoelastic relaxation and topological fluctuations in glass-forming liquids.
J Chem Phys. 2024 Mar 7;160(9). doi: 10.1063/5.0189938.
10
Structural Origin of Dynamic Heterogeneity in Supercooled Liquids.
J Phys Chem B. 2025 Jan 23;129(3):789-813. doi: 10.1021/acs.jpcb.4c06392. Epub 2025 Jan 10.

本文引用的文献

1
Selecting relevant structural features for glassy dynamics by information imbalance.
J Chem Phys. 2024 Nov 14;161(18). doi: 10.1063/5.0235084.
2
Analysis of Local Structure of Mechanical and Thermal Rearrangements in Glasses with the Atomic Cluster Expansion.
J Phys Chem B. 2024 Nov 21;128(46):11492-11499. doi: 10.1021/acs.jpcb.4c06079. Epub 2024 Nov 8.
3
Information Bottleneck Approach for Markov Model Construction.
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.
5
Predicting Dynamic Heterogeneity in Glass-Forming Liquids by Physics-Inspired Machine Learning.
Phys Rev Lett. 2023 Jun 9;130(23):238202. doi: 10.1103/PhysRevLett.130.238202.
6
Improving the prediction of glassy dynamics by pinpointing the local cage.
J Chem Phys. 2023 Apr 7;158(13):134512. doi: 10.1063/5.0144822.
8
Dimensionality reduction of local structure in glassy binary mixtures.
J Chem Phys. 2022 Nov 28;157(20):204503. doi: 10.1063/5.0128265.
9
Fragility in glassy liquids: A structural approach based on machine learning.
J Chem Phys. 2022 Sep 28;157(12):124501. doi: 10.1063/5.0099071.
10
Comparing machine learning techniques for predicting glassy dynamics.
J Chem Phys. 2022 May 28;156(20):204503. doi: 10.1063/5.0088581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验