Suppr超能文献

临床医生对使用诊断标签方案的胸部X光片肺外影像学表现的一致性。

Clinicians' Agreement on Extrapulmonary Radiographic Findings in Chest X-Rays Using a Diagnostic Labelling Scheme.

作者信息

Pehrson Lea Marie, Li Dana, Mayar Alyas, Fraccaro Marco, Bonnevie Rasmus, Sørensen Peter Jagd, Rykkje Alexander Malcom, Andersen Tobias Thostrup, Steglich-Arnholm Henrik, Stærk Dorte Marianne Rohde, Borgwardt Lotte, Darkner Sune, Carlsen Jonathan Frederik, Nielsen Michael Bachmann, Ingala Silvia

机构信息

Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.

Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.

出版信息

Diagnostics (Basel). 2025 Apr 1;15(7):902. doi: 10.3390/diagnostics15070902.

Abstract

Reliable reading and annotation of chest X-ray (CXR) images are essential for both clinical decision-making and AI model development. While most of the literature emphasizes pulmonary findings, this study evaluates the consistency and reliability of annotations for extrapulmonary findings, using a labelling scheme. Six clinicians with varying experience levels (novice, intermediate, and experienced) annotated 100 CXR images using a diagnostic labelling scheme, in two rounds, separated by a three-week washout period. Annotation consistency was assessed using Randolph's free-marginal kappa (RK), prevalence- and bias-adjusted kappa (PABAK), proportion positive agreement (PPA), and proportion negative agreement (PNA). Pairwise comparisons and the McNemar's test were conducted to assess inter-reader and intra-reader agreement. PABAK values indicated high overall grouped labelling agreement (novice: 0.86, intermediate: 0.90, experienced: 0.91). PNA values demonstrated strong agreement on negative findings, while PPA values showed moderate-to-low consistency in positive findings. Significant differences in specific agreement emerged between novice and experienced clinicians for eight labels, but there were no significant variations in RK across experience levels. The McNemar's test confirmed annotation stability between rounds. This study demonstrates that clinician annotations of extrapulmonary findings in CXR are consistent and reliable across different experience levels using a pre-defined diagnostic labelling scheme. These insights aid in optimizing training strategies for both clinicians and AI models.

摘要

可靠地读取和标注胸部X光(CXR)图像对于临床决策和人工智能模型开发都至关重要。虽然大多数文献都强调肺部发现,但本研究使用一种标注方案评估了肺外发现标注的一致性和可靠性。六名经验水平不同(新手、中级和经验丰富)的临床医生使用诊断标注方案对100张CXR图像进行了两轮标注,两轮标注之间间隔三周的洗脱期。使用伦道夫自由边缘kappa(RK)、患病率和偏差调整kappa(PABAK)、阳性一致率(PPA)和阴性一致率(PNA)评估标注一致性。进行成对比较和麦克尼马尔检验以评估读者间和读者内的一致性。PABAK值表明总体分组标注一致性较高(新手:0.86,中级:0.90,经验丰富:0.91)。PNA值表明在阴性发现上有很强的一致性,而PPA值表明在阳性发现上一致性为中度到低度。新手和经验丰富的临床医生在八个标签的具体一致性上存在显著差异,但RK在不同经验水平之间没有显著差异。麦克尼马尔检验证实了两轮标注之间的稳定性。本研究表明,使用预定义的诊断标注方案,临床医生对CXR中肺外发现的标注在不同经验水平上是一致且可靠的。这些见解有助于优化临床医生和人工智能模型的培训策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddef/11988848/a2d20a9b9a38/diagnostics-15-00902-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验