Suppr超能文献

猪脸FRIS:一种用于围栏遮挡分割、基于生成对抗网络的猪脸图像修复及高效猪脸识别的三阶段流程

PigFRIS: A Three-Stage Pipeline for Fence Occlusion Segmentation, GAN-Based Pig Face Inpainting, and Efficient Pig Face Recognition.

作者信息

Ma Ruihan, Chung Seyeon, Kim Sangcheol, Kim Hyongsuk

机构信息

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.

Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Republic of Korea.

出版信息

Animals (Basel). 2025 Mar 28;15(7):978. doi: 10.3390/ani15070978.

Abstract

Accurate animal face recognition is essential for effective health monitoring, behavior analysis, and productivity management in smart farming. However, environmental obstructions and animal behaviors complicate identification tasks. In pig farming, fences and frequent movements often occlude essential facial features, while high inter-class similarity makes distinguishing individuals even more challenging. To address these issues, we introduce the Pig Face Recognition and Inpainting System (PigFRIS). This integrated framework enhances recognition accuracy by removing occlusions and restoring missing facial features. PigFRIS employs state-of-the-art occlusion detection with the YOLOv11 segmentation model, a GAN-based inpainting reconstruction module using AOT-GAN, and a lightweight recognition module tailored for pig face classification. In doing so, our system detects occlusions, reconstructs obscured regions, and emphasizes key facial features, thereby improving overall performance. Experimental results validate the effectiveness of PigFRIS. For instance, YOLO11l achieves a recall of 94.92% and a AP50 of 96.28% for occlusion detection, AOTGAN records a FID of 51.48 and an SSIM of 91.50% for image restoration, and EfficientNet-B2 attains an accuracy of 91.62% with an F1 Score of 91.44% in classification. Additionally, heatmap analysis reveals that the system successfully focuses on relevant facial features rather than irrelevant occlusions, enhancing classification reliability. This work offers a novel and practical solution for animal face recognition in smart farming. It overcomes the limitations of existing methods and contributes to more effective livestock management and advancements in agricultural technology.

摘要

准确的动物面部识别对于智能养殖中的有效健康监测、行为分析和生产力管理至关重要。然而,环境障碍和动物行为使识别任务变得复杂。在养猪业中,围栏和频繁的活动常常遮挡重要的面部特征,而高类间相似度使得区分个体更加具有挑战性。为了解决这些问题,我们引入了猪面部识别与修复系统(PigFRIS)。这个集成框架通过去除遮挡和恢复缺失的面部特征来提高识别准确率。PigFRIS采用基于YOLOv11分割模型的先进遮挡检测、使用AOT-GAN的基于生成对抗网络的修复重建模块以及专为猪面部分类量身定制的轻量级识别模块。通过这样做,我们的系统检测遮挡、重建模糊区域并突出关键面部特征,从而提高整体性能。实验结果验证了PigFRIS的有效性。例如,YOLO11l在遮挡检测方面实现了94.92%的召回率和96.28%的AP50,AOTGAN在图像修复方面记录了51.48的FID和91.50%的SSIM,而EfficientNet-B2在分类中达到了91.62%的准确率和91.44%的F1分数。此外,热图分析表明该系统成功地专注于相关面部特征而非无关遮挡,提高了分类可靠性。这项工作为智能养殖中的动物面部识别提供了一种新颖且实用的解决方案。它克服了现有方法的局限性,有助于实现更有效的畜牧管理和农业技术进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc7f/11988101/a58f572b9912/animals-15-00978-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验