Moore Rio G, Crawford James M
Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59717, USA.
Angew Chem Int Ed Engl. 2025 Jun 2;64(23):e202505186. doi: 10.1002/anie.202505186. Epub 2025 Apr 29.
Isolated and paired extraframework transition metal cations in zeolites are emerging as top candidates for numerous applications, including, but not limited to, selective methane oxidation to methanol, selective catalytic reduction of nitrogen oxides, propane dehydrogenation, propylene epoxidation, and direct air capture of carbon dioxide. Importantly, these well-defined heterogeneous catalysts offer parallels with molecular and metalloenzyme catalytic active sites. Aqueous-phase ion exchange (APIE) is the most common synthesis technique to obtain these catalysts. Solid-state ion exchange (SSIE) is an often overlooked technique that offers synthetic advantages compared to APIE. Thus, recent advances in solid-state synthesis strategies merit contemporary contextualization. In this minireview, we describe the basic principles, methods, mechanisms, challenges, and advances in solid-state ion exchange in the context of well-defined transition metal cation active sites located in extraframework positions of the zeolite.
沸石中孤立的和成对的骨架外过渡金属阳离子正成为众多应用的顶级候选者,包括但不限于将甲烷选择性氧化为甲醇、选择性催化还原氮氧化物、丙烷脱氢、丙烯环氧化以及直接从空气中捕获二氧化碳。重要的是,这些定义明确的多相催化剂与分子和金属酶催化活性位点具有相似之处。水相离子交换(APIE)是获得这些催化剂最常用的合成技术。固态离子交换(SSIE)是一种经常被忽视的技术,与APIE相比具有合成优势。因此,固态合成策略的最新进展值得当代背景化。在这篇微型综述中,我们在位于沸石骨架外位置的定义明确的过渡金属阳离子活性位点的背景下,描述了固态离子交换的基本原理、方法、机制、挑战和进展。