Suppr超能文献

利用基于深度学习的基因组预测加速植物育种

Fast-forwarding plant breeding with deep learning-based genomic prediction.

作者信息

Gao Shang, Yu Tingxi, Rasheed Awais, Wang Jiankang, Crossa Jose, Hearne Sarah, Li Huihui

机构信息

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, CIMMYT-China office, Beijing, 100081, China.

Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.

出版信息

J Integr Plant Biol. 2025 Jul;67(7):1700-1705. doi: 10.1111/jipb.13914. Epub 2025 Apr 14.

Abstract

Deep learning-based genomic prediction (DL-based GP) has shown promising performance compared to traditional GP methods in plant breeding, particularly in handling large, complex multi-omics data sets. However, the effective development and widespread adoption of DL-based GP still face substantial challenges, including the need for large, high-quality data sets, inconsistencies in performance benchmarking, and the integration of environmental factors. Here, we summarize the key obstacles impeding the development of DL-based GP models and propose future developing directions, such as modular approaches, data augmentation, and advanced attention mechanisms.

摘要

与传统的基因组预测方法相比,基于深度学习的基因组预测(DL-based GP)在植物育种中已展现出良好的性能,尤其是在处理大规模、复杂的多组学数据集方面。然而,基于深度学习的基因组预测的有效开发和广泛应用仍面临重大挑战,包括需要大规模、高质量的数据集、性能基准测试的不一致性以及环境因素的整合。在此,我们总结了阻碍基于深度学习的基因组预测模型发展的关键障碍,并提出了未来的发展方向,如模块化方法、数据增强和先进的注意力机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f00/12225013/b1ec12af7ecf/JIPB-67-1700-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验