Cabrera-Serrano Antonio José, Sánchez-Maldonado José Manuel, González-Olmedo Carmen, Carretero-Fernández María, Díaz-Beltrán Leticia, Gutiérrez-Bautista Juan Francisco, García-Verdejo Francisco José, Gálvez-Montosa Fernando, López-López José Antonio, García-Martín Paloma, Pérez Eva María, Sánchez-Rovira Pedro, Reyes-Zurita Fernando Jesús, Sainz Juan
Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain.
Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain.
Antioxidants (Basel). 2025 Feb 25;14(3):264. doi: 10.3390/antiox14030264.
Autophagy is a fundamental cellular process that maintains homeostasis by degrading damaged components and regulating stress responses. It plays a crucial role in cancer biology, including tumor progression, metastasis, and therapeutic resistance. Oxidative stress, similarly, is key to maintaining cellular balance by regulating oxidants and antioxidants, with its disruption leading to molecular damage. The interplay between autophagy and oxidative stress is particularly significant, as reactive oxygen species (ROS) act as both inducers and by-products of autophagy. While autophagy can function as a tumor suppressor in early cancer stages, it often shifts to a pro-tumorigenic role in advanced disease, aiding cancer cell survival under adverse conditions such as hypoxia and nutrient deprivation. This dual role is mediated by several signaling pathways, including PI3K/AKT/mTOR, AMPK, and HIF-1α, which coordinate the balance between autophagic activity and ROS production. In this review, we explore the mechanisms by which autophagy and oxidative stress interact across different hematological malignancies. We discuss how oxidative stress triggers autophagy, creating a feedback loop that promotes tumor survival, and how autophagic dysregulation leads to increased ROS accumulation, exacerbating tumorigenesis. We also examine the therapeutic implications of targeting the autophagy-oxidative stress axis in cancer. Current strategies involve modulating autophagy through specific inhibitors, enhancing ROS levels with pro-oxidant compounds, and combining these approaches with conventional therapies to overcome drug resistance. Understanding the complex relationship between autophagy and oxidative stress provides critical insights into novel therapeutic strategies aimed at improving cancer treatment outcomes.
自噬是一种基本的细胞过程,通过降解受损成分和调节应激反应来维持体内平衡。它在癌症生物学中起着关键作用,包括肿瘤进展、转移和治疗抗性。同样,氧化应激是通过调节氧化剂和抗氧化剂来维持细胞平衡的关键,其破坏会导致分子损伤。自噬与氧化应激之间的相互作用尤为重要,因为活性氧(ROS)既是自噬的诱导剂又是其副产物。虽然自噬在癌症早期阶段可起到肿瘤抑制作用,但在晚期疾病中它通常会转变为促肿瘤发生的角色,帮助癌细胞在缺氧和营养剥夺等不利条件下存活。这种双重作用由几种信号通路介导,包括PI3K/AKT/mTOR、AMPK和HIF-1α,它们协调自噬活性与ROS产生之间的平衡。在这篇综述中,我们探讨了自噬与氧化应激在不同血液系统恶性肿瘤中相互作用的机制。我们讨论了氧化应激如何触发自噬,形成促进肿瘤存活的反馈回路,以及自噬失调如何导致ROS积累增加,加剧肿瘤发生。我们还研究了靶向癌症中自噬 - 氧化应激轴的治疗意义。当前的策略包括通过特定抑制剂调节自噬、用促氧化化合物提高ROS水平,以及将这些方法与传统疗法相结合以克服耐药性。了解自噬与氧化应激之间的复杂关系为旨在改善癌症治疗结果的新型治疗策略提供了关键见解。