Lempe Paul Notger, Guinemer Camille, Fürstenau Daniel, Dressler Corinna, Balzer Felix, Schaaf Thorsten
Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin & Humboldt-Universität zu Berlin, Berlin, Germany.
School of Business & Economics, Freie Universität Berlin, Berlin, Germany.
JMIR Res Protoc. 2025 Apr 14;14:e63017. doi: 10.2196/63017.
Social robots (SR), sensorimotor machines designed to interact with humans, can help to respond to the increasing demands in the health care sector. To ensure the successful use of this technology, acceptance is paramount. Generative artificial intelligence (AI) is an emerging technology with the potential to enhance the functionality of SR and promote user acceptance by further improving human-robot interaction.
We present a protocol for a scoping review of the literature on the implementation of generative AI in SR in the health care sector. The aim of this scoping review is to map out the intersection of SR and generative AI in the health care sector; to explore if generative AI is applied in SR in the health care sector; to outline which models of generative AI and SR are used for these implementations; and to explore whether user acceptance is reported as an outcome following these implementations. This scoping review supports future research by providing an overview of the state of connectedness of 2 emerging technologies and by mapping out research gaps.
We follow the methodological framework developed by Arksey and O'Malley and the recommendations by the Joanna Briggs Institute. Our protocol was drafted using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews). We will conduct a systematic literature search of the online databases MEDLINE, Embase, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Web of Science, and IEEE Xplore, aiming to retrieve relevant data items via tabular data charting from references meeting specific inclusion criteria which are studies published from 2010 onwards, set in the health care sector, focusing on SR with physical bodies and implemented generative AI. There are no restrictions on study types. Results will be categorized, clustered, and summarized using tables, graphs, visual representations, and narratives.
After conducting a preliminary search and deduplication in the second quarter of 2024, we retrieved 3176 preliminary results. This scoping review will be supplemented with the next methodological steps, including retrieving the results in a reference management tool as well as screening titles, abstracts, and full text regarding specific inclusion criteria. The completion of these steps is scheduled for the second quarter of 2025. Limitations based on the heterogeneity of the included studies and the general breadth of a scoping review compared to a systematic review are to be expected. To reduce bias, we adopted a system of dual reviews and thorough documentation of the study selection.
The conducted preliminary search implies that there are a sufficient number of heterogeneous references to complete this scoping review. To our knowledge, this is the first scoping review on generative AI in health care SR.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/63017.
社交机器人(SR)是旨在与人类互动的传感运动机器,有助于应对医疗保健领域日益增长的需求。为确保该技术的成功应用,接受度至关重要。生成式人工智能(AI)是一种新兴技术,有潜力增强社交机器人的功能,并通过进一步改善人机交互来提高用户接受度。
我们提出一项方案,对医疗保健领域在社交机器人中实施生成式人工智能的文献进行范围综述。本范围综述的目的是描绘医疗保健领域社交机器人与生成式人工智能的交叉点;探讨生成式人工智能是否应用于医疗保健领域的社交机器人;概述用于这些实施的生成式人工智能和社交机器人的哪些模型;并探讨在这些实施之后,用户接受度是否作为一项结果被报告。本范围综述通过提供两种新兴技术的关联状态概述并描绘研究差距来支持未来的研究。
我们遵循Arksey和O'Malley开发的方法框架以及乔安娜·布里格斯研究所的建议。我们的方案是使用PRISMA-ScR(系统评价与Meta分析扩展版的范围综述的首选报告项目)起草的。我们将对在线数据库MEDLINE、Embase、CINAHL(护理学与健康相关学科累积索引)、Web of Science和IEEE Xplore进行系统的文献检索,旨在通过从符合特定纳入标准的参考文献(即2010年起发表的、设定在医疗保健领域、关注具有实体的社交机器人并实施了生成式人工智能的研究)的表格数据图表中检索相关数据项。对研究类型没有限制。结果将使用表格、图表、可视化表示和叙述进行分类、聚类和总结。
在2024年第二季度进行初步检索并去除重复项后,我们检索到3176条初步结果。本范围综述将补充接下来的方法步骤,包括在参考管理工具中检索结果以及筛选关于特定纳入标准的标题、摘要和全文。这些步骤计划在2025年第二季度完成。鉴于纳入研究的异质性以及与系统评价相比范围综述的总体广度,预计会存在局限性。为减少偏差,我们采用了双重评审系统和对研究选择的全面记录。
所进行的初步检索表明有足够数量的异质参考文献来完成本范围综述。据我们所知,这是关于医疗保健社交机器人中生成式人工智能的首次范围综述。
国际注册报告识别号(IRRID):PRR1-10.2196/63017。