Suppr超能文献

推动人工智能在新兴技术领域的前沿发展,以重新定义癌症诊断与治疗。

Advancing the frontier of artificial intelligence on emerging technologies to redefine cancer diagnosis and care.

作者信息

Vyas Akanksha, Kumar Krishan, Sharma Ayushi, Verma Damini, Bhatia Dhiraj, Wahi Nitin, Yadav Amit K

机构信息

Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

出版信息

Comput Biol Med. 2025 Jun;191:110178. doi: 10.1016/j.compbiomed.2025.110178. Epub 2025 Apr 13.

Abstract

BACKGROUND

Artificial Intelligence (AI) is capable of revolutionizing cancer therapy and advancing precision oncology via integrating genomics data and digitized health information. AI applications show promise in cancer prediction, prognosis, and treatment planning, particularly in radiomics, deep learning, and machine learning for early cancer diagnosis. However, widespread adoption requires comprehensive data and clinical validation. While AI has demonstrated advantages in treating common malignancies like lung and breast cancers, challenges remain in managing rare tumors due to limited datasets. AI's role in processing multi-omics data and supporting precision oncology decision-making is critical as genetic and health data become increasingly digitized.

METHOD

This review article presents current knowledge on AI and associated technologies, which are being utilized in the diagnosis and therapy of cancer. The applications of AI in radiomics, deep learning, and machine learning for cancer screening and treatment planning are examined. The study also explores the capabilities and limitations of predictive AI in diagnosis and prognosis, as well as generative AI, such as advanced chatbots, in patient and provider interactions.

RESULTS

AI can improve the early diagnosis and treatment of high-incidence cancers like breast and lung cancer. However, its application in rare cancers is limited by insufficient data for training and validation. AI can effectively process large-scale multi-omics data from DNA and RNA sequencing, enhancing precision oncology. Predictive AI aids in risk assessment and prognosis, while generative AI tools improve patient-provider communication. Despite these advancements, further research and technological progress are needed to overcome existing challenges.

CONCLUSIONS

AI holds transformative potential for cancer therapy, particularly in precision oncology, early detection, and personalized treatment planning. However, challenges such as data limitations in rare cancers, the need for clinical validation, and regulatory considerations must be addressed. Future advancements in AI could significantly improve decision-support systems in oncology, ultimately enhancing patient care and quality of life. The review highlights both the opportunities and obstacles in integrating AI into cancer diagnostics and therapeutics, calling for continued research and regulatory oversight.

摘要

背景

人工智能(AI)能够通过整合基因组学数据和数字化健康信息,彻底改变癌症治疗方式并推动精准肿瘤学发展。人工智能应用在癌症预测、预后和治疗规划方面显示出前景,尤其是在用于早期癌症诊断的放射组学、深度学习和机器学习领域。然而,广泛应用需要全面的数据和临床验证。虽然人工智能在治疗肺癌和乳腺癌等常见恶性肿瘤方面已展现出优势,但由于数据集有限,在管理罕见肿瘤方面仍存在挑战。随着基因和健康数据日益数字化,人工智能在处理多组学数据和支持精准肿瘤学决策方面的作用至关重要。

方法

这篇综述文章介绍了目前关于人工智能及相关技术在癌症诊断和治疗中的应用知识。研究了人工智能在放射组学、深度学习和机器学习中用于癌症筛查和治疗规划的应用。该研究还探讨了预测性人工智能在诊断和预后方面的能力和局限性,以及生成性人工智能,如先进聊天机器人在患者与医疗服务提供者互动中的应用。

结果

人工智能可以改善乳腺癌和肺癌等高发病率癌症的早期诊断和治疗。然而,其在罕见癌症中的应用受到训练和验证数据不足的限制。人工智能能够有效处理来自DNA和RNA测序的大规模多组学数据,提高精准肿瘤学水平。预测性人工智能有助于风险评估和预后判断,而生成性人工智能工具则改善了患者与医疗服务提供者之间的沟通。尽管取得了这些进展,但仍需要进一步的研究和技术进步来克服现有挑战。

结论

人工智能在癌症治疗方面具有变革潜力,特别是在精准肿瘤学、早期检测和个性化治疗规划方面。然而,必须解决诸如罕见癌症数据限制、临床验证需求和监管考量等挑战。人工智能未来的进展可能会显著改善肿瘤学中的决策支持系统,最终提高患者护理水平和生活质量。该综述强调了将人工智能整合到癌症诊断和治疗中的机遇与障碍,呼吁持续进行研究和监管监督。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验