Patil Sunita, Kukreja Dr Swetta
Computer Science and Engineering, Amity School of Engineering and Technology, Mumbai, Maharashtra 410206, India.
MethodsX. 2025 Mar 24;14:103277. doi: 10.1016/j.mex.2025.103277. eCollection 2025 Jun.
A Deep Reinforced Cognitive Analytics Model (DRCAM) has been proposed in this work, integrating multimodal learning and reinforcement-based interventions for enhanced cognitive impairment diagnosis and management. This study proposes a novel approach combing Multimodal Transformers (MMT) for fusion features, namely, neuroimaging data, wearable sensors, neuropsychological test scores, and text pro-appraisals. A CNN-LSTM hybrid model is used for mapping spatial and temporal dependencies, and, on the other hand, a Deep Q-Network (DQN) improves while instructing how to perform proper cognitive training. Long-term cognitive state predictions are made by a Temporal Convolution Network (TCN). The MMT model achieves a classification accuracy of 90-92 %. Improvement in accuracy and intervention with discussable efficacy and potential for explanation is seen when benchmarked against conventional cognition.•Proposed the Deep Reinforced Cognitive Analytics Algorithm (DRCAM) for multimodal data.•The proposed model outperforms traditional models in cognitive skill impairment detection.•Demonstrated scalability for diverse healthcare datasets.
本研究提出了一种深度强化认知分析模型(DRCAM),该模型整合了多模态学习和基于强化的干预措施,以加强认知障碍的诊断和管理。本研究提出了一种结合多模态变换器(MMT)的新方法来融合特征,即神经影像数据、可穿戴传感器、神经心理学测试分数和文本自评。使用CNN-LSTM混合模型来映射空间和时间依赖性,另一方面,深度Q网络(DQN)在指导如何进行适当的认知训练时进行改进。通过时间卷积网络(TCN)进行长期认知状态预测。MMT模型的分类准确率达到90-92%。与传统认知方法相比,在准确性上有所提高,且干预具有可讨论的效果和解释潜力。•提出了用于多模态数据的深度强化认知分析算法(DRCAM)。•所提出的模型在认知技能损伤检测方面优于传统模型。•展示了对不同医疗数据集的可扩展性。