Suppr超能文献

探索用于脑机接口的深度学习模型与可解释模型之间的权衡。

Exploring the trade-off between deep-learning and explainable models for brain-machine interfaces.

作者信息

Cubillos Luis H, Revach Guy, Mender Matthew J, Costello Joseph T, Temmar Hisham, Hite Aren, Zutshi Diksha, Wallace Dylan M, Ni Xiaoyong, Kelberman Madison M, Willsey Matthew S, van Sloun Ruud J G, Shlezinger Nir, Patil Parag, Draelos Anne, Chestek Cynthia A

机构信息

Departments of Electrical & Computer Engineering, Biomedical Engineering, Robotics, Computational Medicine & Bioinformatics, and Neurosurgery, University of Michigan, USA.

Department of Information Technology and Electrical Engineering, ETH Zürich, Switzerland.

出版信息

Adv Neural Inf Process Syst. 2024;37:133975-133998.

Abstract

People with brain or spinal cord-related paralysis often need to rely on others for basic tasks, limiting their independence. A potential solution is brain-machine interfaces (BMIs), which could allow them to voluntarily control external devices (e.g., robotic arm) by decoding brain activity to movement commands. In the past decade, deep-learning decoders have achieved state-of-the-art results in most BMI applications, ranging from speech production to finger control. However, the 'black-box' nature of deep-learning decoders could lead to unexpected behaviors, resulting in major safety concerns in real-world physical control scenarios. In these applications, explainable but lower-performing decoders, such as the Kalman filter (KF), remain the norm. In this study, we designed a BMI decoder based on KalmanNet, an extension of the KF that augments its operation with recurrent neural networks to compute the Kalman gain. This results in a varying "trust" that shifts between inputs and dynamics. We used this algorithm to predict finger movements from the brain activity of two monkeys. We compared KalmanNet results offline (pre-recorded data, days) and online (real-time predictions, days) with a simple KF and two recent deep-learning algorithms: tcFNN (non-ReFIT version) and LSTM. KalmanNet achieved comparable or better results than other deep learning models in offline and online modes, relying on the dynamical model for stopping while depending more on neural inputs for initiating movements. We further validated this mechanism by implementing a heteroscedastic KF that used the same strategy, and it also approached state-of-the-art performance while remaining in the explainable domain of standard KFs. However, we also see two downsides to KalmanNet. KalmanNet shares the limited generalization ability of existing deep-learning decoders, and its usage of the KF as an inductive bias limits its performance in the presence of unseen noise distributions. Despite this trade-off, our analysis successfully integrates traditional controls and modern deep-learning approaches to motivate high-performing yet still explainable BMI designs.

摘要

患有脑或脊髓相关瘫痪的人在完成基本任务时往往需要依赖他人,这限制了他们的独立性。一个潜在的解决方案是脑机接口(BMI),它可以通过将大脑活动解码为运动指令,让患者自主控制外部设备(如机器人手臂)。在过去十年中,深度学习解码器在大多数BMI应用中都取得了领先成果,涵盖从语音生成到手指控制等领域。然而,深度学习解码器的“黑匣子”性质可能导致意外行为,在现实世界的物理控制场景中引发重大安全问题。在这些应用中,诸如卡尔曼滤波器(KF)等具有可解释性但性能较低的解码器仍是常态。在本研究中,我们基于卡尔曼网络(KalmanNet)设计了一种BMI解码器,卡尔曼网络是KF的扩展,它通过循环神经网络增强其运算以计算卡尔曼增益。这导致了一种变化的“信任”,在输入和动态之间转换。我们使用该算法根据两只猴子的大脑活动预测手指运动。我们将卡尔曼网络的结果在离线(预记录数据,若干天)和在线(实时预测,若干天)模式下与简单的KF以及两种最新的深度学习算法:tcFNN(非重新拟合版本)和长短期记忆网络(LSTM)进行了比较。卡尔曼网络在离线和在线模式下取得了与其他深度学习模型相当或更好的结果,在停止动作时依赖动态模型,而在启动动作时更多地依赖神经输入。我们通过实现采用相同策略的异方差KF进一步验证了这一机制,它在保持在标准KF的可解释范围内的同时也接近了领先性能。然而,我们也看到卡尔曼网络有两个缺点。卡尔曼网络与现有的深度学习解码器一样具有有限的泛化能力,并且其将KF用作归纳偏差限制了其在存在未知噪声分布情况下的性能。尽管存在这种权衡,我们的分析成功地将传统控制与现代深度学习方法整合在一起,以推动高性能且仍具有可解释性的BMI设计。

相似文献

2
Deep Learning Movement Intent Decoders Trained With Dataset Aggregation for Prosthetic Limb Control.
IEEE Trans Biomed Eng. 2019 Nov;66(11):3192-3203. doi: 10.1109/TBME.2019.2901882. Epub 2019 Feb 26.
3
Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm.
J Neural Eng. 2018 Apr;15(2):026010. doi: 10.1088/1741-2552/aa9e95.
4
Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
Neural Comput. 2019 Jun;31(6):1085-1113. doi: 10.1162/neco_a_01189. Epub 2019 Apr 12.
7
Empirical comparison of deep learning methods for EEG decoding.
Front Neurosci. 2023 Jan 10;16:1003984. doi: 10.3389/fnins.2022.1003984. eCollection 2022.
8
Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
Front Neurosci. 2018 Nov 5;12:751. doi: 10.3389/fnins.2018.00751. eCollection 2018.
9
Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:690-693. doi: 10.1109/EMBC48229.2022.9871669.
10
Balancing Memorization and Generalization in RNNs for High Performance Brain-Machine Interfaces.
bioRxiv. 2023 May 28:2023.05.28.542435. doi: 10.1101/2023.05.28.542435.

本文引用的文献

1
Brain control of bimanual movement enabled by recurrent neural networks.
Sci Rep. 2024 Jan 18;14(1):1598. doi: 10.1038/s41598-024-51617-3.
2
A high-performance neuroprosthesis for speech decoding and avatar control.
Nature. 2023 Aug;620(7976):1037-1046. doi: 10.1038/s41586-023-06443-4. Epub 2023 Aug 23.
3
A high-performance speech neuroprosthesis.
Nature. 2023 Aug;620(7976):1031-1036. doi: 10.1038/s41586-023-06377-x. Epub 2023 Aug 23.
6
Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
Neuron. 2021 Oct 6;109(19):3164-3177.e8. doi: 10.1016/j.neuron.2021.08.009. Epub 2021 Sep 8.
7
Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria.
N Engl J Med. 2021 Jul 15;385(3):217-227. doi: 10.1056/NEJMoa2027540.
8
High-performance brain-to-text communication via handwriting.
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
9
Explainable AI: A Review of Machine Learning Interpretability Methods.
Entropy (Basel). 2020 Dec 25;23(1):18. doi: 10.3390/e23010018.
10
A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain-machine interfaces.
Nat Biomed Eng. 2020 Oct;4(10):973-983. doi: 10.1038/s41551-020-0591-0. Epub 2020 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验