Suppr超能文献

情境中的数据互操作性:选择开放标准时开源实现的重要性。

Data Interoperability in Context: The Importance of Open-Source Implementations When Choosing Open Standards.

作者信息

Kapitan Daniel, Heddema Femke, Dekker André, Sieswerda Melle, Verhoeff Bart-Jan, Berg Matt

机构信息

Eindhoven AI Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, The Netherlands.

PharmAccess Foundation, Amsterdam, The Netherlands.

出版信息

J Med Internet Res. 2025 Apr 15;27:e66616. doi: 10.2196/66616.

Abstract

Following the proposal by Tsafnat et al (2024) to converge on three open health data standards, this viewpoint offers a critical reflection on their proposed alignment of openEHR, Fast Health Interoperability Resources (FHIR), and Observational Medical Outcomes Partnership (OMOP) as default data standards for clinical care and administration, data exchange, and longitudinal analysis, respectively. We argue that open standards are a necessary but not sufficient condition to achieve health data interoperability. The ecosystem of open-source software needs to be considered when choosing an appropriate standard for a given context. We discuss two specific contexts, namely standardization of (1) health data for federated learning, and (2) health data sharing in low- and middle-income countries. Specific design principles, practical considerations, and implementation choices for these two contexts are described, based on ongoing work in both areas. In the case of federated learning, we observe convergence toward OMOP and FHIR, where the two standards can effectively be used side-by-side given the availability of mediators between the two. In the case of health information exchanges in low and middle-income countries, we see a strong convergence toward FHIR as the primary standard. We propose practical guidelines for context-specific adaptation of open health data standards.

摘要

继察夫纳特等人(2024年)提议统一采用三种开放健康数据标准之后,本文观点对他们提议将开放电子健康记录(openEHR)、快速健康互操作性资源(FHIR)和观察性医疗结局合作组织(OMOP)分别作为临床护理与管理、数据交换以及纵向分析的默认数据标准进行了批判性反思。我们认为,开放标准是实现健康数据互操作性的必要条件,但并非充分条件。在为特定情境选择合适的标准时,需要考虑开源软件生态系统。我们讨论了两个具体情境,即(1)联合学习的健康数据标准化,以及(2)低收入和中等收入国家的健康数据共享。基于这两个领域正在开展的工作,描述了这两种情境下的具体设计原则、实际考量因素及实施选择。在联合学习方面,我们观察到向OMOP和FHIR的趋同,鉴于两者之间有中介工具,这两种标准可以有效地并行使用。在低收入和中等收入国家的健康信息交换方面,我们看到向FHIR作为主要标准的强烈趋同。我们针对开放健康数据标准的特定情境适配提出了实用指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aba/12041819/0021e60687eb/jmir_v27i1e66616_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验