Lv Shiqin, Wu Zizhuo, Huang Yu, Wu Pingzhen, Shao Jianqing, Wu Jiajia, Zhong Ke, Zhou Lihua, Wu Wutian
Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China.
Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, 510102, China, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510102, China.
J Orthop Translat. 2025 Apr 2;52:40-54. doi: 10.1016/j.jot.2025.02.007. eCollection 2025 May.
Brachial plexus injury (BPI) leads to significant impairment of upper limb motor function, primarily due to progressive atrophy of denervated muscles resulting from the slow rate of axonal regeneration. Therefore, identifying strategies to accelerate axon extension is of critical importance.
In this study, we first established a mouse model of brachial plexus injury and employed chemogenetic approaches to specifically activate C6 spinal motoneurons. We then assessed axonal regeneration and motor function recovery in the injured mice through behavioral tests, morphological analyses, and electrophysiological detection.
We found that the AAV9-hM3Dq virus efficiently transduced motoneurons, and CNO administration robustly activated mature hM3Dq motoneurons in vivo. Chronic chemogenetic activation significantly enhanced the regeneration of spinal motoneurons injured by ventral root crush, accelerated axon extension, and improved axonal remyelination, resulting in increased axon size. This activation also facilitated the formation of new neuromuscular junctions (NMJs) in adult motoneurons and reduced muscle atrophy. Furthermore, it promoted electrophysiological recovery of the motor unit and improved overall motor function.
Chemogenetic activation of adult motoneurons can robustly enhances axon growth and mediate better behavioral recovery. These findings highlight the therapeutic potential of chemogenetic neuronal activation in promoting functional recovery following nerve injury.
We have established a chronic chemogenetic method to activate hM3Dq motor neurons after brachial plexus injury, which accelerates axonal regeneration and enhances functional recovery. This strategy holds promise as a clinical therapeutic approach for treating nervous system injuries.
臂丛神经损伤(BPI)会导致上肢运动功能严重受损,主要原因是轴突再生速度缓慢导致失神经肌肉逐渐萎缩。因此,确定加速轴突延伸的策略至关重要。
在本研究中,我们首先建立了臂丛神经损伤的小鼠模型,并采用化学遗传学方法特异性激活C6脊髓运动神经元。然后,我们通过行为测试、形态学分析和电生理检测评估损伤小鼠的轴突再生和运动功能恢复情况。
我们发现AAV9-hM3Dq病毒能有效转导运动神经元,给予CNO可在体内强力激活成熟的hM3Dq运动神经元。慢性化学遗传学激活显著增强了腹根挤压损伤的脊髓运动神经元的再生能力,加速了轴突延伸,改善了轴突的髓鞘再生,导致轴突直径增加。这种激活还促进了成年运动神经元中新神经肌肉接头(NMJ)的形成,并减少了肌肉萎缩。此外,它促进了运动单位的电生理恢复,改善了整体运动功能。
成年运动神经元的化学遗传学激活可有力地促进轴突生长并介导更好的行为恢复。这些发现突出了化学遗传学神经元激活在促进神经损伤后功能恢复方面的治疗潜力。
我们建立了一种慢性化学遗传学方法,用于在臂丛神经损伤后激活hM3Dq运动神经元,该方法可加速轴突再生并增强功能恢复。这一策略有望成为治疗神经系统损伤的临床治疗方法。