Suppr超能文献

通过基于结节的量化增强甲状腺乳头状癌颈淋巴结转移的预测:S-Detect与超声弹性成像联合应用

Enhancing prediction of cervical lymph node metastasis in papillary thyroid carcinoma through nodule-oriented quantification: combined S-Detect and ultrasound elastography.

作者信息

Xu Ze-Lin, Hou Ji-Xue, Zheng Zhen-Hao, Deng Ya-Qian, Zeng Guan-Ming, Wang Si-Rui, Zhu Pei-Shan, Kang Yan-Fei, Du Ting-Ting, Dong Jian, Liu Wen, Li Jun, Cui Xin-Wu

机构信息

Department of Ultrasound, the First Affiliated Hospital of Shihezi University, Shihezi, China.

Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Shihezi University, Shihezi, China.

出版信息

Quant Imaging Med Surg. 2025 Apr 1;15(4):3416-3429. doi: 10.21037/qims-24-1650. Epub 2025 Mar 28.

Abstract

BACKGROUND

Papillary thyroid carcinoma (PTC) frequently metastasizes to cervical lymph nodes (LNs), with metastasis rates of 20-90%, significantly impacting patient prognosis. Although ultrasound (US) is the primary preoperative assessment tool, its accuracy (Acc) in detecting LN metastasis (LNM) remains insufficient, with conventional US detecting only 50% of confirmed cases. This study aimed to improve the prediction of cervical LNM in PTC by combining quantitative nodule orientation parameters with multi-modal US techniques.

METHODS

Data were retrospectively collected from 117 patients (141 nodules: 85 non-metastasis and 56 metastasis) who underwent PTC resection and cervical LN dissection from September 2023 to May 2024. All patients underwent US, US elastography (UE), and S-Detect examinations before surgery. For each nodule, the angle between the nodule's maximum diameter and the skin was measured. Logistic regression analysis assessed the correlation between each variable and cervical LNM, identified significant predictive factors, and a predictive model presented as a nomogram was constructed.

RESULTS

Univariate analysis showed significant differences between non-metastasis and metastasis groups in orientation quantification [-9.3° (-35.2°, 17.2°) 13.9° (-1.6°, 54.0°), P<0.001], age (P=0.002), maximum nodule diameter (P=0.017), boundary (P=0.021), microcalcifications on S-Detect (P=0.014), microcalcifications (P=0.036), and ECI scores (P=0.043). Multivariate analysis identified seven independent predictors for cervical LNM, with S-Detect-detected microcalcifications showing the highest odds ratio (OR) [OR =4.159; 95% confidence interval (CI): 1.545-11.199]. The combined predictive model incorporating conventional US, UE, S-Detect, and orientation quantification demonstrated superior diagnostic performance [area under the curve (AUC) =0.861; 95% CI: 0.803-0.919] compared to individual models (P<0.001), achieving sensitivity (Sen) of 0.911 and specificity (Spe) of 0.659. The nomogram showed good calibration with no significant deviation (χ=3.271; P=0.926).

CONCLUSIONS

S-Detect accurately identifies the direction of the maximum diameter of thyroid nodules, and quantification of the longitudinal section orientation can be used as an independent predictor for LNM in PTC.

摘要

背景

甲状腺乳头状癌(PTC)常转移至颈部淋巴结(LNs),转移率为20% - 90%,对患者预后有显著影响。尽管超声(US)是主要的术前评估工具,但其检测淋巴结转移(LNM)的准确性(Acc)仍不足,传统超声仅能检测出50%的确诊病例。本研究旨在通过将结节定向定量参数与多模态超声技术相结合,提高PTC颈部LNM的预测能力。

方法

回顾性收集2023年9月至2024年5月期间接受PTC切除及颈部淋巴结清扫的117例患者(141个结节:85个无转移和56个转移)的数据。所有患者在手术前均接受了超声、超声弹性成像(UE)和S-Detect检查。对于每个结节,测量结节最大直径与皮肤之间的夹角。采用逻辑回归分析评估各变量与颈部LNM之间的相关性,确定显著预测因素,并构建以列线图表示的预测模型。

结果

单因素分析显示,无转移组和转移组在定向定量[-9.3°(-35.2°,17.2°)对13.9°(-1.6°,54.0°),P<0.001]、年龄(P = 0.002)、结节最大直径(P = 0.017)、边界(P = 0.021)、S-Detect上的微钙化(P = 0.014)、微钙化(P = 0.036)和弹性成像对比指数(ECI)评分(P = 0.043)方面存在显著差异。多因素分析确定了7个颈部LNM的独立预测因素,其中S-Detect检测到的微钙化显示出最高的优势比(OR)[OR = 4.159;95%置信区间(CI):1.545 - 11.199]。与单个模型相比,结合传统超声、UE、S-Detect和定向定量的联合预测模型表现出更好的诊断性能[曲线下面积(AUC)= 0.861;95% CI:0.803 - 0.919](P<0.001),灵敏度(Sen)为0.911,特异度(Spe)为0.659。列线图显示校准良好,无显著偏差(χ = 3.271;P = 0.926)。

结论

S-Detect能准确识别甲状腺结节最大直径的方向,纵切面方向的定量可作为PTC中LNM的独立预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b029/11994488/195a041f4b4d/qims-15-04-3416-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验