Suppr超能文献

用于超低功耗和生化介导神经形态晶体管的基于MXene的有机突触纤维。

MXene-enabled organic synaptic fiber for ultralow-power and biochemical-mediated neuromorphic transistor.

作者信息

Qing Xing, Xiao Qing, Wang Dong, Yang Guoliang, Chen Bin, Zhang Caoyang, Li Mufang, Liu Dan, Lei Weiwei

机构信息

Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, China.

Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, China.

出版信息

Biosens Bioelectron. 2025 Aug 1;281:117443. doi: 10.1016/j.bios.2025.117443. Epub 2025 Apr 9.

Abstract

Fibrous bioelectronic provides an intrinsically accessible platform for artificial nerve and real-time physiological perception. However, advanced fiber-based artificial synapse remains a challenge due to the contradictory conductance demands for brain-like energy consumption and ultrasensitive biomarker perception. Herein, taking advantage of the highly accessible surface, rich functional groups and excellent electrical conductivity, a hierarchical nanostructured MXene (TiCT)-enabled artificial neurofiber was proposed for neuromorphic organic electrochemical transistors (OECT) with biomolecule-mediated plasticity. The device can successfully emulate the typical short-term/long-term synaptic behaviors in both protonic gel electrolyte and aprotic ionic liquid gel electrolyte, with a minimum energy consumption of 1.21 fJ/spike and 0.10 fJ/spike. Uric acid (UA), a neurocognitive function and acute joint pain involved biomarker, and its specific enzyme were investigated to simulate the neurotransmitter-receptor induced postsynaptic synaptic weight modulation and pain sensitization process. The OECT showed excellent sensitivity and anti-interference performance. Moreover, selective and concentration-depended synaptic behaviors were successfully achieved in both phosphate-buffered saline (PBS) and artificial urine environments with significant memory effects. This study provided a potential to combine artificial neuromorphic devices with biological sensory neural networks.

摘要

纤维生物电子学为人工神经和实时生理感知提供了一个本质上易于使用的平台。然而,由于对类脑能量消耗和超灵敏生物标志物感知的相互矛盾的电导要求,先进的基于纤维的人工突触仍然是一个挑战。在此,利用高度可及的表面、丰富的官能团和优异的导电性,提出了一种具有分级纳米结构的MXene(TiCT)人工神经纤维,用于具有生物分子介导可塑性的神经形态有机电化学晶体管(OECT)。该器件能够在质子凝胶电解质和非质子离子液体凝胶电解质中成功模拟典型的短期/长期突触行为,最低能耗分别为1.21 fJ/脉冲和0.10 fJ/脉冲。研究了与神经认知功能和急性关节疼痛相关的生物标志物尿酸(UA)及其特异性酶,以模拟神经递质-受体诱导的突触后突触权重调制和疼痛敏化过程。该OECT表现出优异的灵敏度和抗干扰性能。此外,在磷酸盐缓冲盐水(PBS)和人工尿液环境中均成功实现了选择性和浓度依赖性的突触行为,并具有显著的记忆效应。这项研究为将人工神经形态器件与生物传感神经网络相结合提供了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验