Marcos Valdez Marina M, Sanchez Julio, Bertotto María E, Fandiño Octavio E, Cometto Fernando P, Sperandeo Norma R
Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas y Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA)-Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
Departamento de Materiales Centro, INTI-Dirección Técnica Centro Occidental-Regional Córdoba, Av. Vélez Sarsfield 1561, Córdoba, X5000 JKC, Argentina.
AAPS PharmSciTech. 2025 Apr 17;26(5):105. doi: 10.1208/s12249-025-03101-y.
The aim of this study was to prepare and characterize amorphous clobazam (CLOB) and investigate its devitrification under various stressors (temperature/humidity, compaction and mechanical/thermal stresses). Amorphous CLOB was prepared by melt-quenching in liquid nitrogen. The quench-cooled sample (CLOB-q) was characterized via polarized light and hot-stage microscopies (PLM and HSM), X-ray powder diffraction (XRPD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), conventional and modulated DSC (DSC-c and MDSC®), thermogravimetry (TG), dynamic mechanical analysis (DMA), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Stability of CLOB-q toward temperature/humidity, compaction, and combined mechanical and thermal stress were also evaluated. CLOB-q was a truly amorphous form, as revealed by DSC-c, MDSC® and DMA. Its calorimetric glass transition temperature (Tg) was 67.0 °C (20 °C/min) and the ratio Tm/Tg was 1.34, indicating a fragile glass. The water contact angle of CLOB-q (121.8° ± 1.7°) was lower than that of crystalline CLOB (CLOB-c, 131.3° ± 3.6°), likely due to its higher concentration of surface CL, as determined by XPS. Storage of CLOB-q at - 20 °C/0% RH, 25 °C/0% RH and 40 °C/75% RH resulted in its complete devitrification to CLOB-c within 60 days, 4 days, and 42 h respectively. Subjection of CLOB-q to compaction (19.6 kN) and combined mechanical-thermal stresses also resulted in complete crystallization to CLOB-c. In conclusion, amorphous CLOB was successfully prepared in the laboratory for the first time and thoroughly characterized. It easily devitrified to CLOB-c by effect of different stressors, and thus it could not have advantages over CLOB-c in terms of physical stability.
本研究的目的是制备无定形氯巴占(CLOB)并对其进行表征,并研究其在各种应激源(温度/湿度、压实以及机械/热应力)作用下的析晶情况。通过在液氮中熔体淬火制备无定形CLOB。通过偏光显微镜和热台显微镜(PLM和HSM)、X射线粉末衍射(XRPD)、衰减全反射傅里叶变换红外光谱(ATR-FTIR)、常规和调制差示扫描量热法(DSC-c和MDSC®)、热重分析(TG)、动态力学分析(DMA)、X射线光电子能谱(XPS)以及接触角测量对骤冷样品(CLOB-q)进行表征。还评估了CLOB-q对温度/湿度、压实以及机械和热应力联合作用的稳定性。如DSC-c、MDSC®和DMA所示,CLOB-q为真正的无定形形式。其热分析玻璃化转变温度(Tg)为67.0℃(升温速率20℃/min),Tm/Tg比值为1.34,表明为脆性玻璃。CLOB-q的水接触角(121.8°±1.7°)低于结晶型CLOB(CLOB-c,131.3°±3.6°),这可能是由于XPS测定其表面氯含量较高所致。将CLOB-q分别储存在-20℃/0%相对湿度、25℃/0%相对湿度和40℃/75%相对湿度条件下,分别在60天、4天和42小时内完全析晶为CLOB-c。对CLOB-q施加压实(19.6 kN)以及机械-热应力联合作用也会导致其完全结晶为CLOB-c。总之,首次在实验室成功制备了无定形CLOB并对其进行了全面表征。在不同应激源作用下,它很容易析晶为CLOB-c,因此在物理稳定性方面并不优于CLOB-c。