Suppr超能文献

MIRO1突变导致代谢适应不良,进而导致帕金森病相关的多巴胺能神经元丧失。

MIRO1 mutation leads to metabolic maladaptation resulting in Parkinson's disease-associated dopaminergic neuron loss.

作者信息

Zagare Alise, Sauter Thomas, Barmpa Kyriaki, Pacheco Maria, Krüger Rejko, Schwamborn Jens Christian, Saraiva Claudia

机构信息

Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.

Systems Biology and Epigenetics Group, Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.

出版信息

NPJ Syst Biol Appl. 2025 Apr 17;11(1):37. doi: 10.1038/s41540-025-00509-x.

Abstract

MIRO1 is a mitochondrial outer membrane protein important for mitochondrial distribution, dynamics and bioenergetics. Over the last decade, evidence has pointed to a link between MIRO1 and Parkinson's disease (PD) pathogenesis. Moreover, a heterozygous MIRO1 mutation (p.R272Q) was identified in a PD patient, from which an iPSC-derived midbrain organoid model was derived, showing MIRO1 mutant-dependent selective loss of dopaminergic neurons. Herein, we use patient-specific iPSC-derived midbrain organoids carrying the MIRO1 p.R272Q mutation to further explore the cellular and molecular mechanisms involved in dopaminergic neuron degeneration. Using single-cell RNA sequencing (scRNAseq) analysis and metabolic modeling we show that the MIRO1 p.R272Q mutation affects the dopaminergic neuron developmental path leading to metabolic deficits and disrupted neuron-astrocyte metabolic crosstalk, which might represent an important pathogenic mechanism leading to their loss.

摘要

MIRO1是一种线粒体外膜蛋白,对线粒体的分布、动态变化和生物能量学具有重要作用。在过去十年中,有证据表明MIRO1与帕金森病(PD)的发病机制之间存在联系。此外,在一名PD患者中鉴定出一种杂合的MIRO1突变(p.R272Q),并由此构建了诱导多能干细胞(iPSC)衍生的中脑类器官模型,该模型显示出MIRO1突变依赖的多巴胺能神经元选择性丧失。在此,我们使用携带MIRO1 p.R272Q突变的患者特异性iPSC衍生的中脑类器官,进一步探索多巴胺能神经元变性所涉及的细胞和分子机制。通过单细胞RNA测序(scRNAseq)分析和代谢建模,我们发现MIRO1 p.R272Q突变影响多巴胺能神经元的发育路径,导致代谢缺陷以及神经元-星形胶质细胞代谢串扰破坏,这可能是导致它们丧失的重要致病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12006346/de8f107ce0b7/41540_2025_509_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验