Ko Sanghwan, Jo Migyeong, Kyung Munsu, Lee Wonju, Ko Woo Hyung, Na Jung-Hyun, Chun Youn Seo, Ko Byoung Joon, Jung Sang Taek
Department of Biomedical Sciences, Graduate School, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Institute of Chemical Processes, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea.
J Biol Eng. 2025 Apr 18;19(1):35. doi: 10.1186/s13036-025-00506-y.
Optimizing the IgG Fc domain for neonatal Fc receptor (FcRn) binding is crucial for enhancing antibody pharmacokinetics. The prolonged serum half-life of IgG antibody is governed by its pH-dependent interaction with FcRn, enabling efficient binding at acidic endosomal pH, intracellular trafficking, and release at neutral serum pH. However, a critical yet previously unrecognized challenge in Fc engineering for extending the serum half-life of therapeutic antibodies is the intense competition with endogenous IgG for FcRn binding during intracellular trafficking, which limits FcRn-mediated transport and reduces the serum persistence of therapeutic antibodies. To address this, we developed an Fc variant that precisely modulates pH-dependent FcRn binding kinetics, accelerates FcRn association at acidic pH, and promotes rapid dissociation at neutral pH, thereby enhancing FcRn-driven intracellular transport, outcompeting endogenous IgG, and achieving unprecedented improvement in the serum half-life of therapeutic antibodies.
Using comprehensive site-directed saturation mutagenesis coupled with functional screening, we generated a diverse panel of Fc variants and identified two with distinct FcRn binding kinetics: YML (L309Y/Q311M/M428L), which exhibited superior FcRn association at acidic pH and accelerated dissociation at neutral pH, and EML (L309E/Q311M/M428L), which displayed attenuated binding kinetics. In human FcRn transgenic mice, YML extended the serum half-life of clinically used trastuzumab with a wild-type Fc by 6.1-fold, demonstrating a remarkable improvement over previously reported Fc-engineered variants, including PFc29 (Q311R/M428L) and DHS (L309D/Q311H/N434S), which represent the most effective Fc modifications for prolonging serum persistence to date. This in vivo validation underscores the pivotal role of FcRn kinetic tuning in overcoming endogenous IgG competition and maximizing FcRn-mediated antibody transport. Additionally, YML exhibited potent complement-dependent cytotoxicity (CDC) while maintaining favorable physicochemical properties.
This study presents a rational Fc engineering framework to optimize FcRn binding kinetics, addressing a previously unconsidered challenge-endogenous IgG competition during intracellular trafficking of therapeutic antibodies. The distinct kinetic behaviors of YML and EML highlight the critical necessity of precise control over pH-dependent association and dissociation rates in FcRn binding. YML represents a next-generation Fc platform, offering enhanced pharmacokinetics and improved effector functions, thus providing a powerful strategy for developing biologics with superior serum persistence and therapeutic efficacy.
优化IgG Fc结构域与新生儿Fc受体(FcRn)的结合对于提高抗体药代动力学至关重要。IgG抗体延长的血清半衰期取决于其与FcRn的pH依赖性相互作用,使其能够在酸性内体pH值下有效结合、进行细胞内运输,并在中性血清pH值下释放。然而,在Fc工程中延长治疗性抗体血清半衰期的一个关键但此前未被认识到的挑战是,在细胞内运输过程中与内源性IgG竞争FcRn结合的激烈程度,这限制了FcRn介导的运输并降低了治疗性抗体的血清持久性。为了解决这个问题,我们开发了一种Fc变体,它能精确调节pH依赖性FcRn结合动力学,在酸性pH值下加速FcRn结合,并在中性pH值下促进快速解离,从而增强FcRn驱动的细胞内运输,胜过内源性IgG,并在治疗性抗体的血清半衰期方面取得了前所未有的改善。
通过全面的定点饱和诱变结合功能筛选,我们生成了一系列Fc变体,并鉴定出两种具有不同FcRn结合动力学的变体:YML(L309Y/Q311M/M428L),其在酸性pH值下表现出优异的FcRn结合能力,并在中性pH值下加速解离;以及EML(L309E/Q311M/M428L),其结合动力学减弱。在人FcRn转基因小鼠中,YML将临床使用的野生型Fc曲妥珠单抗的血清半衰期延长了6.1倍,与此前报道的Fc工程变体相比有显著改善,包括PFc29(Q311R/M428L)和DHS(L309D/Q311H/N434S),它们代表了迄今为止延长血清持久性最有效的Fc修饰。这种体内验证强调了FcRn动力学调节在克服内源性IgG竞争和最大化FcRn介导的抗体运输中的关键作用。此外,YML在保持良好物理化学性质的同时表现出强大的补体依赖性细胞毒性(CDC)。
本研究提出了一个合理的Fc工程框架来优化FcRn结合动力学,解决了一个此前未被考虑的挑战——治疗性抗体细胞内运输过程中的内源性IgG竞争。YML和EML不同的动力学行为突出了精确控制FcRn结合中pH依赖性结合和解离速率的关键必要性。YML代表了一个下一代Fc平台,具有增强的药代动力学和改善的效应功能,从而为开发具有卓越血清持久性和治疗效果的生物制品提供了一个强大的策略。