Menzel Manuel D, Eberhard Lisa, Arias Austin, Padrón-Navarta José Alberto, Plümper Oliver
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Avda. de Las Palmeras no. 4, 18100 Armilla, Spain.
Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands.
Contrib Mineral Petrol. 2025;180(4):30. doi: 10.1007/s00410-025-02221-9. Epub 2025 Apr 17.
Aqueous fluids released by metamorphic dehydration of serpentinites are a key component for seismicity, creep, and geochemical cycling in subduction zones. How these fluids drain and migrate towards the mantle wedge has yet to be fully understood. Here we address the influence of pre-existing structural and mineralogical heterogeneities in serpentinites on dehydration and fluid migration at forearc conditions. We partially dehydrated natural serpentinite containing brucite veins in a piston-cylinder apparatus with a temperature gradient across the conditions of the brucite + antigorite = olivine + fluid reaction (485-520 °C; 1.5 GPa). Micro-tomography, electron microscopy and microstructural analysis of the experimental results, coupled with thermodynamic modelling, show that temperature, mineralogical heterogeneity and variable ingress of external H controlled the dehydration extent. Experimentally formed olivine indicates a topotactic relationship between [100] and [0001], although the resultant fabric is overall random because brucite was randomly oriented. Olivine forms mono-mineralic aggregates along the walls of brucite veins, displaying very high porosity (up to 32%) and permeability (10-10 m). Tracing the pre-existing brucite vein network, these aggregates can form a transient network of interconnected, highly permeable fluid channels that allows drainage and may enhance open-system exchange with neighboring lithologies. Infiltration of reduced external fluids can trigger redox dehydration of magnetite + antigorite to Fe-rich olivine, which renews porosity and propagates focused fluid flow. The distribution of brucite and magnetite, especially as vein networks, therefore has a first-order control on how focused fluid drainage and flow paths develop during subduction of serpentinites.
The online version contains supplementary material available at 10.1007/s00410-025-02221-9.
蛇纹岩变质脱水释放的水性流体是俯冲带地震活动、蠕变和地球化学循环的关键组成部分。这些流体如何排出并向地幔楔迁移尚未完全了解。在这里,我们探讨了蛇纹岩中预先存在的结构和矿物学非均质性对弧前条件下脱水和流体迁移的影响。我们在活塞圆筒装置中对含有水镁石脉的天然蛇纹岩进行部分脱水,温度梯度跨越水镁石 + 叶蛇纹石 = 橄榄石 + 流体反应的条件(485 - 520°C;1.5 GPa)。对实验结果进行微观断层扫描、电子显微镜和微观结构分析,并结合热力学建模,结果表明温度、矿物学非均质性和外部氢的可变进入控制了脱水程度。实验形成的橄榄石表明[100]和[0001]之间存在拓扑关系,尽管由于水镁石随机取向,最终的组构总体上是随机的。橄榄石沿着水镁石脉壁形成单矿物聚集体,显示出非常高的孔隙率(高达32%)和渗透率(10 - 10 m)。追踪预先存在的水镁石脉网络,这些聚集体可以形成相互连接的、高渗透性流体通道的瞬态网络,允许排水,并可能增强与相邻岩性的开放系统交换。还原外部流体的渗入可引发磁铁矿 + 叶蛇纹石向富铁橄榄石的氧化还原脱水,从而更新孔隙率并促进集中的流体流动。因此,水镁石和磁铁矿的分布,尤其是作为脉网络,对蛇纹岩俯冲过程中集中流体排水和流动路径的发展具有一级控制作用。
在线版本包含可在10.1007/s00410 - 025 - 02221 - 9获取的补充材料。