Suppr超能文献

基于放大内镜联合窄带成像特征的胃癌前病变风险预测模型

Risk prediction model for precancerous gastric lesions based on magnifying endoscopy combined with narrow-band imaging features.

作者信息

Tao Jingna, Zhang Zhongmian, Meng Linghan, Zhang Liju, Wang Jiaqi, Li Zhihong

机构信息

Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.

Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.

出版信息

Front Oncol. 2025 Apr 4;15:1554523. doi: 10.3389/fonc.2025.1554523. eCollection 2025.

Abstract

BACKGROUND

This study aimed to construct and validate diagnostic models for the Operative Link on Gastritis Assessment (OLGA) and Operative Link on Gastric Intestinal Metaplasia Assessment (OLGIM) staging systems using three different methodologies based on magnifying endoscopy with narrow-band imaging (ME-NBI) features, to evaluate model performance, and to analyse risk factors for high-risk OLGA/OLGIM stages.

METHODS

We enrolled 356 patients who underwent white-light endoscopy and ME-NBI at the Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, between January 2022 and September 2023. Clinical data were recorded. Chi-square or Fisher's exact tests were used to analyse differences in endoscopic features between OLGA/OLGIM stages. Variables showing statistical significance underwent collinearity diagnosis before model inclusion. We constructed predictive models using Bayesian stepwise discrimination, random forest, and XGBoost algorithms. Receiver operating characteristic (ROC) curves were plotted using Python 3.12.4. Model accuracy, area under the ROC curve (AUC), sensitivity, and specificity were calculated for comprehensive validation.

RESULTS

All three models demonstrated excellent diagnostic performance, with random forest and XGBoost models showing marginally superior accuracy, AUC values, and sensitivity compared with the Bayesian stepwise discrimination model. For OLGA staging, the AUC values were 0.928, 0.958, and 0.966, with accuracies of 0.854, 0.902, and 0.918 for Bayesian, random forest, and XGBoost models, respectively. For OLGIM staging, the corresponding AUC values were 0.924, 0.975, and 0.979, with accuracies of 0.910, 0.938, and 0.927. Risk factors for high-risk OLGA included lesion location (subcardial and lower body greater curvature), intestinal metaplasia patches, lesion size, demarcation line (DL), and margin regularity of micro-capillary demarcation line (MCDL). Risk factors for high-risk OLGIM included infection status, mucosal condition, lesion location (lesser curvature and lower body greater curvature), erosion, lesion size, DL, vessel and epithelial classification (VEC), white globe appearance (WGA), and MCDL margin regularity.

CONCLUSIONS

All three models demonstrated robust accuracy and predictive capability, confirming that conventional white-light endoscopy combined with ME-NBI features provides valuable diagnostic reference for clinical risk assessment of precancerous gastric lesions.

摘要

背景

本研究旨在基于窄带成像放大内镜(ME-NBI)特征,采用三种不同方法构建并验证用于胃炎评估手术链接(OLGA)和胃小肠化生评估手术链接(OLGIM)分期系统的诊断模型,评估模型性能,并分析高危OLGA/OLGIM分期的危险因素。

方法

我们纳入了2022年1月至2023年9月在北京中医药大学东直门医院胃肠科接受白光内镜和ME-NBI检查的356例患者。记录临床数据。采用卡方检验或Fisher精确检验分析OLGA/OLGIM各分期之间内镜特征的差异。在纳入模型之前,对显示有统计学意义的变量进行共线性诊断。我们使用贝叶斯逐步判别、随机森林和XGBoost算法构建预测模型。使用Python 3.12.4绘制受试者工作特征(ROC)曲线。计算模型准确性、ROC曲线下面积(AUC)、敏感性和特异性进行综合验证。

结果

所有三种模型均表现出优异的诊断性能,随机森林和XGBoost模型在准确性、AUC值和敏感性方面略优于贝叶斯逐步判别模型。对于OLGA分期,贝叶斯、随机森林和XGBoost模型的AUC值分别为0.928、0.958和0.966,准确率分别为0.854、0.902和0.918。对于OLGIM分期,相应的AUC值分别为0.924、0.975和0.979,准确率分别为0.910、0.938和0.927。高危OLGA的危险因素包括病变位置(贲门下和胃体大弯下部)、肠化生斑块、病变大小、分界线(DL)和微血管分界线(MCDL)边缘规则性。高危OLGIM的危险因素包括感染状态、黏膜状况、病变位置(胃小弯和胃体大弯下部)、糜烂、病变大小、DL、血管和上皮分类(VEC)、白圈外观(WGA)和MCDL边缘规则性。

结论

所有三种模型均表现出强大的准确性和预测能力,证实传统白光内镜结合ME-NBI特征可为胃癌前病变的临床风险评估提供有价值的诊断参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dc4/12006015/8c40ac7a0126/fonc-15-1554523-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验