Suppr超能文献

匹配门经典影子的统一框架。

Unified framework for matchgate classical shadows.

作者信息

Heyraud Valentin, Chomet Héloise, Tilly Jules

机构信息

InstaDeep, Paris, France.

InstaDeep, London, United Kingdom.

出版信息

npj Quantum Inf. 2025;11(1):65. doi: 10.1038/s41534-025-01015-y. Epub 2025 Apr 16.

Abstract

Estimating quantum fermionic properties is a computationally difficult yet crucial task for the study of electronic systems. Recent developments have begun to address this challenge by introducing classical shadows protocols relying on sampling of Fermionic Gaussian Unitaries (FGUs): a class of transformations in fermionic space which can be conveniently mapped to matchgates circuits. The different protocols proposed in the literature use different sub-ensembles of the orthogonal group O(2) to which FGUs can be associated. We propose an approach that unifies these different protocols, proving their equivalence, and deriving from it an optimal sampling scheme. We begin by demonstrating that the first three moments of the FGU ensemble associated with SO(2) and of its intersection with the Clifford group are equal, generalizing a result known for O(2) and addressing a question raised in previous works. Building on this proof, we establish the equivalence between the shadows protocols resulting from FGU ensembles analyzed in the literature. Finally, from our results, we propose a sampling scheme for a small sub-ensemble of matchgates circuits that is optimal in terms of number of gates and that inherits the performances guarantees of the previous ensembles.

摘要

估计量子费米子特性对于电子系统研究而言是一项计算困难但却至关重要的任务。最近的进展已开始通过引入依赖费米子高斯酉变换(FGUs)采样的经典影子协议来应对这一挑战:费米子空间中的一类变换,可方便地映射到匹配门电路。文献中提出的不同协议使用了与FGUs相关联的正交群O(2)的不同子集合。我们提出一种方法,统一这些不同协议,证明它们的等效性,并从中推导出一种最优采样方案。我们首先证明与SO(2)相关联的FGU集合及其与克利福德群的交集的前三阶矩相等,推广了一个关于O(2)的已知结果,并解决了先前工作中提出的一个问题。基于这一证明,我们确立了文献中分析的FGU集合所产生的影子协议之间的等效性。最后,根据我们的结果,我们为匹配门电路的一个小子集合提出了一种采样方案,该方案在门的数量方面是最优的,并且继承了先前集合的性能保证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5468/12003182/92574a709f59/41534_2025_1015_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验