Botto João, Cetrez Nursen, Nikolopoulos Dionysis, Regardt Malin, Heintz Emelie, Lindblom Julius, Parodis Ioannis
Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.
Rheumatol Adv Pract. 2025 Apr 18;9(2):rkaf032. doi: 10.1093/rap/rkaf032. eCollection 2025.
To determine factors associated with reports of EuroQol 5-Dimensions (EQ-5D) full health state (FHS) before and after a trial intervention in patients with SLE, resorting to machine learning algorithms.
We conducted a post hoc analysis of two phase 3 clinical trials of belimumab (BLISS-52, BLISS-76). Demographic, laboratory and clinical features were retrieved and the Monte Carlo Feature Selection algorithm was employed, then further refined upon consideration of collinearity and clinical relevance. We used support vector machine with radial basis function kernel (SVMRadial), least absolute shrinkage and selection operator (LASSO), neural network (NNet) and logistic regression (LR) to capture both linear and non-linear relationships while ensuring interpretability and robustness.
Among 1642 SLE patients, 12.9% reported FHS at baseline and 23.1% at week 52. Selected features were age, sex, Asian ancestry, baseline cSLEDAI-2K, SELENA-SLEDAI PGA, and urine protein:creatinine ratio (UPCR) and baseline EQ-5D 3-Levels (EQ-5D-3L) index score (week 52 models only). The models predicting FHS demonstrated comparable performance at baseline and week 52. A maximum area under the curve of 0.73 was seen for the baseline LASSO and LR models and a maximum of 0.77 for the week 52 LASSO and NNet models. Negative predictive values were high for all models (0.88-0.94). Calibration showed marginal improvement in week 52 models.
Machine learning identified older age, female sex, non-Asian ancestry, high disease activity and low UPCR to be associated with a lack of FHS experience in SLE patients at baseline and week 52. High baseline EQ-5D-3L index scores constituted the strongest predictor of FHS at week 52.
The BLISS-52 and BLISS-76 trials are registered at www.clinicaltrials.gov (NCT00424476 and NCT00410384, respectively).
借助机器学习算法,确定系统性红斑狼疮(SLE)患者在试验干预前后报告的欧洲五维健康量表(EQ-5D)完全健康状态(FHS)相关因素。
我们对贝利尤单抗的两项3期临床试验(BLISS-52、BLISS-76)进行了事后分析。收集了人口统计学、实验室和临床特征,并采用蒙特卡罗特征选择算法,然后在考虑共线性和临床相关性后进一步优化。我们使用带有径向基函数核的支持向量机(SVMRadial)、最小绝对收缩和选择算子(LASSO)、神经网络(NNet)和逻辑回归(LR)来捕捉线性和非线性关系,同时确保可解释性和稳健性。
在1642例SLE患者中,12.9%在基线时报告了FHS,23.1%在第52周报告了FHS。选定的特征包括年龄、性别、亚洲血统、基线cSLEDAI-2K、SELENA-SLEDAI PGA、尿蛋白:肌酐比值(UPCR)以及基线EQ-5D 3级(EQ-5D-3L)指数评分(仅第52周模型)。预测FHS的模型在基线和第52周表现出可比的性能。基线LASSO和LR模型的最大曲线下面积为0.73,第52周LASSO和NNet模型的最大曲线下面积为0.77。所有模型的阴性预测值都很高(0.88 - 0.94)。校准显示第52周模型有轻微改善。
机器学习确定年龄较大、女性、非亚洲血统、疾病活动度高和UPCR低与SLE患者在基线和第52周缺乏FHS体验相关。高基线EQ-5D-3L指数评分是第52周FHS的最强预测因素。
BLISS-52和BLISS-76试验分别在www.clinicaltrials.gov上注册(NCT00424476和NCT00410384)。