Suppr超能文献

用于植物大规模筛选的综合性一体化CRISPR工具箱。

A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants.

作者信息

Cheng Yanhao, Li Gen, Qi Aileen, Mandlik Rushil, Pan Changtian, Wang Doris, Ge Sophia, Qi Yiping

机构信息

Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.

Montgomery Blair High School, Silver Spring, MD 20901, USA.

出版信息

Plant Cell. 2025 Apr 2;37(4). doi: 10.1093/plcell/koaf081.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (Cas) technologies facilitate routine genome engineering of one or a few genes at a time. However, large-scale CRISPR screens with guide RNA libraries remain challenging in plants. Here, we have developed a comprehensive all-in-one CRISPR toolbox for Cas9-based genome editing, cytosine base editing, adenine base editing (ABE), Cas12a-based genome editing and ABE, and CRISPR-Act3.0-based gene activation in both monocot and dicot plants. We evaluated all-in-one T-DNA expression vectors in rice (Oryza sativa, monocot) and tomato (Solanum lycopersicum, dicot) protoplasts, demonstrating their broad and reliable applicability. To showcase the applications of these vectors in CRISPR screens, we constructed guide RNA (gRNA) pools for testing in rice protoplasts, establishing a high-throughput approach to select high-activity gRNAs. Additionally, we demonstrated the efficacy of sgRNA library screening for targeted mutagenesis of ACETOLACTATE SYNTHASE in rice, recovering novel candidate alleles for herbicide resistance. Furthermore, we carried out a CRISPR activation screen in Arabidopsis thaliana, rapidly identifying potent gRNAs for FLOWERING LOCUS T activation that confer an early-flowering phenotype. This toolbox contains 61 versatile all-in-one vectors encompassing nearly all commonly used CRISPR technologies. It will facilitate large-scale genetic screens for loss-of-function or gain-of-function studies, presenting numerous promising applications in plants.

摘要

成簇规律间隔短回文重复序列(CRISPR)相关核酸酶(Cas)技术便于一次对一个或几个基因进行常规基因组工程操作。然而,利用向导RNA文库进行大规模CRISPR筛选在植物中仍然具有挑战性。在此,我们开发了一个全面的一体化CRISPR工具箱,用于单子叶和双子叶植物中基于Cas9的基因组编辑、胞嘧啶碱基编辑、腺嘌呤碱基编辑(ABE)、基于Cas12a的基因组编辑和ABE,以及基于CRISPR-Act3.0的基因激活。我们在水稻(单子叶植物稻属)和番茄(双子叶植物番茄属)原生质体中评估了一体化T-DNA表达载体,证明了它们广泛且可靠的适用性。为了展示这些载体在CRISPR筛选中的应用,我们构建了向导RNA(gRNA)文库用于在水稻原生质体中测试,建立了一种高通量方法来筛选高活性gRNA。此外,我们证明了sgRNA文库筛选对水稻乙酰乳酸合酶进行靶向诱变的有效性,获得了抗除草剂的新候选等位基因。此外,我们在拟南芥中进行了CRISPR激活筛选,快速鉴定出用于激活开花位点T的有效gRNA,其赋予了早花表型。这个工具箱包含61个通用的一体化载体,涵盖了几乎所有常用的CRISPR技术。它将有助于进行功能丧失或功能获得研究的大规模遗传筛选,在植物中展现出众多有前景的应用。

相似文献

1
A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants.
Plant Cell. 2025 Apr 2;37(4). doi: 10.1093/plcell/koaf081.
3
pHNRhCas9NG, single expression cassette-based dual-component dual-transcription unit CRISPR/Cas9 system for plant genome editing.
Trends Biotechnol. 2025 Jul;43(7):1788-1808. doi: 10.1016/j.tibtech.2025.03.016. Epub 2025 Apr 24.
5
CRISPR-Based Regulation for High-Throughput Screening.
ACS Synth Biol. 2025 Jun 20;14(6):1890-1904. doi: 10.1021/acssynbio.5c00076. Epub 2025 May 22.
6
A Comprehensive Protocol for Assembly of Multiple gRNAs into a Direct Vector for Genome Editing in Tomato.
Methods Mol Biol. 2024;2788:317-335. doi: 10.1007/978-1-0716-3782-1_19.
7
CRISPR/Cas9-mediated genome editing in Ganoderma lucidum: recent advances and biotechnological opportunities.
World J Microbiol Biotechnol. 2025 Jun 25;41(7):223. doi: 10.1007/s11274-025-04458-9.
8
Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy.
Hum Gene Ther. 2024 Oct;35(19-20):781-797. doi: 10.1089/hum.2024.020.
10
A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.
Mol Plant. 2015 Aug;8(8):1274-84. doi: 10.1016/j.molp.2015.04.007. Epub 2015 Apr 24.

引用本文的文献

2
A magic pocket: An all-in-one CRISPR toolbox for plants.
Plant Cell. 2025 May 9;37(5). doi: 10.1093/plcell/koaf120.

本文引用的文献

1
Enhanced editing efficiency in Arabidopsis with a LbCas12a variant harboring D156R and E795L mutations.
aBIOTECH. 2024 Mar 26;5(2):117-126. doi: 10.1007/s42994-024-00144-w. eCollection 2024 Jun.
2
Targeted genome-modification tools and their advanced applications in crop breeding.
Nat Rev Genet. 2024 Sep;25(9):603-622. doi: 10.1038/s41576-024-00720-2. Epub 2024 Apr 24.
3
Precise fine-turning of GhTFL1 by base editing tools defines ideal cotton plant architecture.
Genome Biol. 2024 Feb 26;25(1):59. doi: 10.1186/s13059-024-03189-8.
4
The ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize.
Nat Genet. 2024 Feb;56(2):315-326. doi: 10.1038/s41588-023-01644-z. Epub 2024 Jan 18.
5
CRISPR/Cas9 mutagenesis of the GROWTH-REGULATING FACTOR (GRF) gene family.
Front Genome Ed. 2023 Oct 16;5:1251557. doi: 10.3389/fgeed.2023.1251557. eCollection 2023.
6
Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato.
Plant Physiol. 2023 Aug 31;193(1):291-303. doi: 10.1093/plphys/kiad347.
7
Cytosine base editors (CBEs) for inducing targeted DNA base editing in Nicotiana benthamiana.
BMC Plant Biol. 2023 Jun 7;23(1):305. doi: 10.1186/s12870-023-04322-8.
8
Boosting genome editing efficiency in human cells and plants with novel LbCas12a variants.
Genome Biol. 2023 Apr 30;24(1):102. doi: 10.1186/s13059-023-02929-6.
9
CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding.
Nat Protoc. 2023 Jun;18(6):1760-1794. doi: 10.1038/s41596-023-00823-w. Epub 2023 Apr 21.
10
The engineered CRISPR-Mb2Cas12a variant enables sensitive and fast nucleic acid-based pathogens diagnostics in the field.
Plant Biotechnol J. 2023 Jul;21(7):1465-1478. doi: 10.1111/pbi.14051. Epub 2023 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验