Toumpe Ilias, Choudhury Subham, Hatzimanikatis Vassily, Miskovic Ljubisa
Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
ACS Synth Biol. 2025 Aug 15;14(8):2906-2919. doi: 10.1021/acssynbio.4c00868. Epub 2025 Apr 22.
Researchers have invested much effort into developing kinetic models due to their ability to capture dynamic behaviors, transient states, and regulatory mechanisms of metabolism, providing a detailed and realistic representation of cellular processes. Historically, the requirements for detailed parametrization and significant computational resources created barriers to their development and adoption for high-throughput studies. However, recent advancements, including the integration of machine learning with mechanistic metabolic models, the development of novel kinetic parameter databases, and the use of tailor-made parametrization strategies, are reshaping the field of kinetic modeling. In this Review, we discuss these developments and offer future directions, highlighting the potential of these advances to drive progress in systems and synthetic biology, metabolic engineering, and medical research at an unprecedented scale and pace.
由于动力学模型能够捕捉代谢的动态行为、瞬态状态和调控机制,为细胞过程提供详细而逼真的描述,研究人员已投入大量精力来开发动力学模型。从历史上看,详细参数化的要求和大量的计算资源为其开发以及在高通量研究中的应用造成了障碍。然而,最近的进展,包括将机器学习与机械代谢模型相结合、开发新型动力学参数数据库以及使用定制的参数化策略,正在重塑动力学建模领域。在本综述中,我们讨论了这些进展并提供了未来的方向,强调了这些进展以前所未有的规模和速度推动系统生物学、合成生物学、代谢工程和医学研究取得进展的潜力。