Suppr超能文献

绘制全脑活动网络:Brainways作为神经生物学发现的工具

Mapping brain-wide activity networks: brainways as a tool for neurobiological discovery.

作者信息

Kantor Ben, Ruzal Keren, Ben-Ami Bartal Inbal

机构信息

School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel.

Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.

出版信息

Neuropsychopharmacology. 2025 Apr 22. doi: 10.1038/s41386-025-02105-3.

Abstract

Identifying brain-wide neural circuits and targeting these areas for neuropharmacological interventions are significant challenges in contemporary neuroscience. Traditional methods for registering and quantifying fluorescence in brain slices are labor-intensive and struggle to extract functional insights from complex datasets. To address these challenges, we introduce Brainways-an AI-based, open-source software that streamlines neural network identification from digital imaging to network analysis. Brainways facilitates neurobiological research by enabling automatic registration of coronal brain slices to any 3D brain atlas, along with precise quantification of fluorescent markers, such as activity markers and tracers, across brain regions. Brainways incorporates advanced statistical tools to identify neural patterns and functional networks associated with specific experimental contrasts. Trained on rat and mouse brain atlases, Brainways achieves over 93% atlas registration accuracy. The software also allows users to easily adjust the automatic registration through a user-friendly interface for enhanced accuracy. We present two experiment analyses demonstrating Brainways' capabilities. The first replicates and extends findings from a prior experiment on pro-social behavior in rats, wherein rats learned to free a trapped cagemate from a restrainer under ingroup and outgroup social conditions. Using Brainways, we analyzed approximately 300 times more tissue area than in our previous manual approach. The second experiment utilizes Multiplex RNAscope imaging for whole-brain registration, enabling combined quantification of cell type expression and activity markers. These analyses highlight Brainways' ability to link specific cell types and their activity to task conditions, providing detailed neural insights. Brainways offers a rapid and accurate solution for large-scale neurobiological projects, creating new opportunities to understand neural networks underlying complex behaviors.

摘要

识别全脑范围的神经回路并针对这些区域进行神经药理学干预是当代神经科学面临的重大挑战。在脑片中记录和量化荧光的传统方法需要耗费大量人力,并且难以从复杂的数据集中提取功能见解。为应对这些挑战,我们推出了Brainways——一款基于人工智能的开源软件,它简化了从数字成像到网络分析的神经网络识别过程。Brainways通过将冠状脑片自动注册到任何三维脑图谱,以及对荧光标记物(如活性标记物和示踪剂)在脑区进行精确量化,促进了神经生物学研究。Brainways整合了先进的统计工具,以识别与特定实验对比相关的神经模式和功能网络。在大鼠和小鼠脑图谱上进行训练后,Brainways的图谱注册准确率超过93%。该软件还允许用户通过用户友好的界面轻松调整自动注册,以提高准确性。我们展示了两个实验分析,证明了Brainways的能力。第一个实验重复并扩展了先前关于大鼠亲社会行为实验的结果,在该实验中,大鼠学会在组内和组外社会条件下从约束装置中解救被困的同笼伙伴。使用Brainways,我们分析的组织面积比之前的手动方法多了约300倍。第二个实验利用多重RNAscope成像进行全脑注册,能够对细胞类型表达和活性标记物进行联合量化。这些分析突出了Brainways将特定细胞类型及其活性与任务条件联系起来的能力,提供了详细的神经见解。Brainways为大规模神经生物学项目提供了一种快速准确的解决方案,为理解复杂行为背后的神经网络创造了新机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验