Hamrani Abderrachid, Leizaola Daniela, Vedere Nikhil Kumar Reddy, Kirsner Robert S, Kaile Kacie, Lee Trinidad Alexander, Godavarty Anuradha
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA.
Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2675, Miami, FL 33174, USA.
Cosmetics. 2024 Dec;11(6). doi: 10.3390/cosmetics11060218. Epub 2024 Dec 10.
Traditional methods for skin color classification, such as visual assessments and conventional image classification, face limitations in accuracy and consistency under varying conditions. To address this, we developed AI Dermatochroma Analytica (AIDA), an unsupervised learning system designed to enhance dermatological diagnostics. AIDA applies clustering techniques to classify skin tones without relying on labeled data, evaluating over twelve models, including K-means, density-based, hierarchical, and fuzzy logic algorithms. The model's key feature is its ability to mimic the process clinicians traditionally perform by visually matching the skin with the Fitzpatrick Skin Type (FST) palette scale but with enhanced precision and accuracy using Euclidean distance-based clustering techniques. AIDA demonstrated superior performance, achieving a 97% accuracy rate compared to 87% for a supervised convolutional neural network (CNN). The system also segments skin images into clusters based on color similarity, providing detailed spatial mapping aligned with dermatological standards. This segmentation reduces the uncertainty related to lighting conditions and other environmental factors, enhancing precision and consistency in skin color classification. This approach offers significant improvements in personalized dermatological care by reducing reliance on labeled data, improving diagnostic accuracy, and paving the way for future applications in diverse dermatological and cosmetic contexts.
传统的肤色分类方法,如视觉评估和传统图像分类,在不同条件下的准确性和一致性方面存在局限性。为了解决这一问题,我们开发了人工智能皮肤色度分析系统(AIDA),这是一个旨在加强皮肤病诊断的无监督学习系统。AIDA应用聚类技术对肤色进行分类,无需依赖标记数据,评估了包括K均值、基于密度、层次和模糊逻辑算法在内的十二种以上模型。该模型的关键特性是能够模仿临床医生传统上通过将皮肤与菲茨帕特里克皮肤类型(FST)调色板进行视觉匹配来进行的过程,但使用基于欧几里得距离的聚类技术提高了精度和准确性。AIDA表现出卓越的性能,准确率达到97%,而有监督的卷积神经网络(CNN)的准确率为87%。该系统还根据颜色相似度将皮肤图像分割成簇,提供符合皮肤病学标准的详细空间映射。这种分割减少了与光照条件和其他环境因素相关的不确定性,提高了肤色分类的精度和一致性。这种方法通过减少对标记数据的依赖、提高诊断准确性以及为未来在各种皮肤病学和美容领域的应用铺平道路,在个性化皮肤病护理方面取得了显著进展。