Li Lu, Zhao Haonan, Lyu Lixin, Yang Fan
School of Information and Artificial Intelligence, Anhui Business College, Anhui, 241002, China.
School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
Sci Rep. 2025 Apr 23;15(1):14137. doi: 10.1038/s41598-025-98112-x.
The Gazelle Optimization Algorithm (GOA) is a recently proposed and widely recognized metaheuristic algorithm. However, it suffers from slow convergence, low precision, and a tendency to fall into local optima when addressing practical problems. To address these limitations, we propose a Multi-Strategy Improved Gazelle Optimization Algorithm (MIGOA). Key enhancements include population initialization based on an optimal point set, a tangent flight search strategy, an adaptive step size factor, and novel exploration strategies. These improvements collectively enhance GOA's exploration capability, convergence speed, and precision, effectively preventing it from becoming trapped in local optima. We evaluated MIGOA using the CEC2017 and CEC2020 benchmark test sets, comparing it with GOA and eight other algorithms. The results, validated by the Wilcoxon rank-sum test and the Friedman mean rank test, demonstrate that MIGOA achieves average rankings of 1.80, 2.03, 2.03, and 2.70 on CEC2017 (Dim = 30/50/100) and CEC2020 (Dim = 20), respectively, outperforming the standard GOA and other high-performance optimizers. Furthermore, the application of MIGOA to three-dimensional unmanned aerial vehicle (UAV) path planning problems and 2 engineering optimization design problems further validates its potential in solving constrained optimization problems. Experimental results consistently indicate that MIGOA exhibits strong scalability and practical applicability.
瞪羚优化算法(GOA)是一种最近提出并被广泛认可的元启发式算法。然而,在解决实际问题时,它存在收敛速度慢、精度低以及容易陷入局部最优的问题。为了解决这些局限性,我们提出了一种多策略改进瞪羚优化算法(MIGOA)。关键改进包括基于最优解集的种群初始化、切线飞行搜索策略、自适应步长因子和新颖的探索策略。这些改进共同提高了GOA的探索能力、收敛速度和精度,有效防止其陷入局部最优。我们使用CEC2017和CEC2020基准测试集对MIGOA进行了评估,并将其与GOA和其他八种算法进行了比较。经威尔科克森秩和检验和弗里德曼平均秩检验验证的结果表明,MIGOA在CEC2017(维度=30/50/100)和CEC2020(维度=20)上的平均排名分别为1.80、2.03、2.03和2.70,优于标准GOA和其他高性能优化器。此外,将MIGOA应用于三维无人机(UAV)路径规划问题和两个工程优化设计问题进一步验证了其在解决约束优化问题方面的潜力。实验结果一致表明,MIGOA具有很强的可扩展性和实际适用性。