Heller Marie Theres, Maderbacher Guenther, Schuster Marie Farina, Forchhammer Lina, Scharf Markus, Renkawitz Tobias, Pagano Stefano
Department of Orthopedic Surgery, University of Regensburg, Asklepios Klinikum, Bad Abbach, Germany.
Comput Struct Biotechnol J. 2025 Apr 12;28:148-155. doi: 10.1016/j.csbj.2025.04.009. eCollection 2025.
Accurate preoperative planning in total knee arthroplasty (TKA) is essential. Traditional manual radiographic planning can be time-consuming and potentially prone to inaccuracies. This study investigates the performance of an AI-based radiographic planning tool in comparison with manual measurements in patients undergoing total knee arthroplasty, using a retrospective observational design to assess reliability and efficiency.
We retrospectively compared the Autoplan tool integrated within the mediCAD software (mediCAD Hectec GmbH, Altdorf, Germany), routinely implemented in our institutional workflow, to manual measurements performed by two orthopedic specialists on pre- and postoperative radiographs of 100 patients who underwent elective TKA. The following parameters were measured: leg length, mechanical axis deviation (MAD), mechanical lateral proximal femoral angle (mLPFA), anatomical mechanical angle (AMA), mechanical lateral distal femoral angle (mLDFA), joint line convergence angle (JLCA), mechanical medial proximal tibial angle (mMPTA), and mechanical tibiofemoral angle (mTFA).Intraclass correlation coefficients (ICCs) were calculated to assess measurement reliability, and the time required for each method was recorded.
The Autoplan tool demonstrated high reliability (ICC > 0.90) compared with manual measurements for linear parameters (e.g., leg length and MAD). However, the angular measurements of mLPFA, JLCA, and AMA exhibited poor reliability (ICC < 0.50) among all raters. The Autoplan tool significantly reduced the time required for measurements compared to manual measurements, with a mean time saving of 44.3 seconds per case (95 % CI: 43.5-45.1 seconds, < 0.001).
AI-assisted tools like the Autoplan tool in mediCAD offer substantial time savings and demonstrate reliable measurements for certain linear parameters in preoperative TKA planning. However, the observed low reliability in some measurements, even amongst experienced human raters, suggests inherent challenges in the radiographic assessment of angular parameters. Further development is needed to improve the accuracy of automated angular measurements, and to address the inherent variability in their assessment.
全膝关节置换术(TKA)中准确的术前规划至关重要。传统的手动放射学规划可能耗时且容易出现不准确情况。本研究采用回顾性观察设计来评估可靠性和效率,调查了一种基于人工智能的放射学规划工具在全膝关节置换术患者中的性能,并与手动测量进行比较。
我们回顾性地比较了我们机构工作流程中常规使用的mediCAD软件(德国阿尔特多夫的mediCAD Hectec GmbH公司)中集成的Autoplan工具,与两名骨科专家对100例行择期全膝关节置换术患者术前和术后X线片进行的手动测量。测量了以下参数:腿长、机械轴偏移(MAD)、机械性股骨近端外侧角(mLDFA)、解剖机械角(AMA)、机械性股骨远端外侧角(mLDFA)、关节线汇聚角(JLCA)、机械性胫骨近端内侧角(mMPTA)和机械性胫股角(mTFA)。计算组内相关系数(ICC)以评估测量可靠性,并记录每种方法所需的时间。
与线性参数(如腿长和MAD)的手动测量相比,Autoplan工具显示出高可靠性(ICC>0.90)。然而,在所有评估者中,mLDFA、JLCA和AMA的角度测量显示出低可靠性(ICC<0.50)。与手动测量相比,Autoplan工具显著减少了测量所需的时间,平均每例节省44.3秒(95%CI:43.5 - 45.1秒,<0.001)。
mediCAD中的Autoplan工具等人工智能辅助工具在术前全膝关节置换术规划中可大幅节省时间,并对某些线性参数显示出可靠的测量结果。然而,即使在经验丰富的人类评估者中,一些测量中观察到的低可靠性表明角度参数的放射学评估存在固有挑战。需要进一步开发以提高自动角度测量的准确性,并解决其评估中的固有变异性。