Li Hongyang, Jin Xiangbowen, Chu Binbin, Zhang Kai, Qin Xuan, Pan Sheng, Zhao Yadan, Shi Haoliang, Zhang Jiawei, Wang Houyu, Wen Zhen, He Yao, Sun Xuhui
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China.
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China.
Small. 2025 Jun;21(22):e2500113. doi: 10.1002/smll.202500113. Epub 2025 Apr 25.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation, joint swelling, pain, and progressive joint destruction. Methotrexate (MTX) is the standard first-line treatment for RA, but its clinical application is hindered by poor water solubility and non-specific delivery. In this work, a multifunctional drug-delivery nanoplatform that targets both macrophages and tumor necrosis factor α (TNFα) is developed to enhance the therapeutic efficacy of MTX in RA. The nanoplatform consists of folic acid (FA, for macrophage targeting) and a TNFα-specific Aptamer (TNFα-Apt), facilitating a dual-targeting strategy that significantly improves the accumulation of MTX at the sites of RA lesions (≈3.5-fold). Moreover, the manganese dioxide (MnO₂) and polydopamine (PDA) coatings on the nanoplatform effectively scavenge reactive oxygen species (ROS), generate oxygen, and promote the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2 macrophages. This shift in macrophage polarization restores the expression of key inflammatory cytokines, improving the local inflammatory microenvironment. Ultimately, the nanoplatform significantly ameliorates the inflammation and joint damage in a collagen-induced arthritis (CIA) model, suggesting that this multi-target combination therapy holds considerable potential for the treatment of RA in vivo.
类风湿性关节炎(RA)是一种慢性自身免疫性疾病,其特征为持续性炎症、关节肿胀、疼痛以及进行性关节破坏。甲氨蝶呤(MTX)是RA的标准一线治疗药物,但其临床应用因水溶性差和非特异性递送而受到阻碍。在这项工作中,开发了一种同时靶向巨噬细胞和肿瘤坏死因子α(TNFα)的多功能药物递送纳米平台,以提高MTX在RA中的治疗效果。该纳米平台由叶酸(FA,用于巨噬细胞靶向)和TNFα特异性适配体(TNFα-Apt)组成,采用双靶向策略,显著提高了MTX在RA病变部位的蓄积(约3.5倍)。此外,纳米平台上的二氧化锰(MnO₂)和聚多巴胺(PDA)涂层有效地清除活性氧(ROS)、产生氧气,并促进促炎性M1巨噬细胞向抗炎性M2巨噬细胞极化。巨噬细胞极化的这种转变恢复了关键炎性细胞因子的表达,改善了局部炎症微环境。最终,该纳米平台在胶原诱导的关节炎(CIA)模型中显著减轻了炎症和关节损伤,表明这种多靶点联合疗法在体内治疗RA方面具有相当大的潜力。