Suppr超能文献

基于自适应差分隐私机制的加密脉冲神经网络

Encrypted Spiking Neural Networks Based on Adaptive Differential Privacy Mechanism.

作者信息

Luo Xiwen, Fu Qiang, Liu Junxiu, Luo Yuling, Qin Sheng, Ouyang Xue

机构信息

Guangxi Key Lab of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, China.

Key Laboratory of Nonlinear Circuits and Optical Communications, Guangxi Normal University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China.

出版信息

Entropy (Basel). 2025 Mar 22;27(4):333. doi: 10.3390/e27040333.

Abstract

Spike neural networks (SNNs) perform excellently in various domains. However, SNNs based on differential privacy (DP) protocols introduce uniform noise to the gradient parameters, which may affect the trade-off between model efficiency and personal privacy. Therefore, the adaptive differential private SNN (ADPSNN) is proposed in this work. It dynamically adjusts the privacy budget based on the correlations between the output spikes and labels. In addition, the noise is added to the gradient parameters according to the privacy budget. The ADPSNN is tested on four datasets with different spiking neurons including leaky integrated-and-firing (LIF) and integrate-and-fire (IF) models. Experimental results show that the LIF neuron model provides superior utility on the MNIST (accuracy 99.56%) and Fashion-MNIST (accuracy 92.26%) datasets, while the IF neuron model performs well on the CIFAR10 (accuracy 90.67%) and CIFAR100 (accuracy 66.10%) datasets. Compared to existing methods, the accuracy of ADPSNN is improved by 0.09% to 3.1%. The ADPSNN has many potential applications, such as image classification, health care, and intelligent driving.

摘要

脉冲神经网络(SNN)在各个领域都表现出色。然而,基于差分隐私(DP)协议的SNN会向梯度参数引入均匀噪声,这可能会影响模型效率和个人隐私之间的权衡。因此,本文提出了自适应差分隐私脉冲神经网络(ADPSNN)。它根据输出脉冲与标签之间的相关性动态调整隐私预算。此外,根据隐私预算向梯度参数添加噪声。ADPSNN在包括泄漏积分发放(LIF)和积分发放(IF)模型在内的四种具有不同脉冲神经元的数据集上进行了测试。实验结果表明,LIF神经元模型在MNIST(准确率99.56%)和Fashion-MNIST(准确率92.26%)数据集上提供了更好的效用,而IF神经元模型在CIFAR10(准确率90.67%)和CIFAR100(准确率66.10%)数据集上表现良好。与现有方法相比,ADPSNN的准确率提高了0.09%至3.1%。ADPSNN有许多潜在应用,如图像分类、医疗保健和智能驾驶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705e/12026015/7402bb9224e6/entropy-27-00333-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验