Dexter Jonathan, Ford Ian J
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
Entropy (Basel). 2025 Apr 3;27(4):383. doi: 10.3390/e27040383.
Modeling the evolution of a system using stochastic dynamics typically implies increasing subjective uncertainty in the adopted state of the system and its environment as time progresses, and stochastic entropy production has been developed as a measure of this change. In some situations, the evolution of stochastic entropy production can be described using an Itô process, but mathematical difficulties can emerge if diffusion in the system phase space happens to be restricted to a subspace of a lower dimension. This situation can arise if there are constants of the motion, for example, or more generally when there are functions of the coordinates that evolve without noise. More simply, difficulties can emerge if there are more coordinates than there are independent noises. We show how the problem of computing the stochastic entropy production in such a situation can be overcome. We illustrate the approach using a simple case of diffusion on an ellipse. We go on to consider an open three-level quantum system modeled within a framework of Markovian quantum state diffusion. We show how a nonequilibrium stationary state of the system, with a constant mean rate of stochastic entropy production, can be established under suitable environmental couplings.
使用随机动力学对系统的演化进行建模通常意味着,随着时间的推移,系统及其环境的采用状态中的主观不确定性会增加,并且随机熵产生已被开发为这种变化的一种度量。在某些情况下,随机熵产生的演化可以用伊藤过程来描述,但如果系统相空间中的扩散恰好限制在较低维度的子空间中,就可能出现数学困难。例如,如果存在运动常数,或者更一般地说,当存在无噪声演化的坐标函数时,就会出现这种情况。更简单地说,如果坐标数量多于独立噪声数量,也会出现困难。我们展示了如何克服在这种情况下计算随机熵产生的问题。我们用椭圆上扩散的一个简单例子来说明这种方法。接着,我们考虑一个在马尔可夫量子态扩散框架内建模的开放三能级量子系统。我们展示了在适当的环境耦合下,如何建立具有恒定随机熵产生平均速率的系统非平衡稳态。