Suppr超能文献

基于MOS的MEMS气体传感器阵列对化学战剂的检测与模式识别

Detection and Pattern Recognition of Chemical Warfare Agents by MOS-Based MEMS Gas Sensor Array.

作者信息

Xu Mengxue, Hu Xiaochun, Zhang Hongpeng, Miao Ting, Ma Lan, Liang Jing, Zhu Yuefeng, Zhu Haiyan, Cheng Zhenxing, Sun Xuhui

机构信息

Institute of NBC Defence, Beijing 102205, China.

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, China.

出版信息

Sensors (Basel). 2025 Apr 21;25(8):2633. doi: 10.3390/s25082633.

Abstract

Chemical warfare agents (CWAs), including hydrogen cyanide (AC), 2-[fluoro(methyl)phosphoryl]oxypropane (GB), 3-[fluoro(methyl)phosphoryl]oxy-2,2-dimethylbutane (GD), ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX), and di-2-chloroethyl sulfide (HD), pose a great threat to public safety; therefore, it is important to develop sensing technology for CWAs. Herein, a sensor array consisting of 24 metal oxide semiconductor (MOS)-based MEMS sensors with good gas sensing performance, a simple device structure (0.9 mm × 0.9 mm), and low power consumption (<10 mW on average) was developed. The experimental results show that there are always several sensors among the 24 sensors that show good sensing performance in relation to each CWA, such as a relatively significant response, a broad detection range (AC: 5.8-89 ppm; GB: 0.04-0.47 ppm; GD: 0.06-4.7 ppm; VX: 9.978 × 10-1.101 × 10; HD: 0.61-4.9 ppm), and a low detection limit that is lower than the immediately dangerous for life and health (IDLH) level of the five CWAs. This indicates that these sensors can meet the needs for qualitative detection and can provide an early warning regarding low concentrations of CWAs. In addition, features were extracted from the initial kinetic characteristics and dynamic change characteristics of the sensing response. Finally, principal component analysis (PCA) and machine learning algorithms were applied for CWA classification. The obtained PCA plots showed significant differences between groups, and the narrow neural network among the machine learning algorithms achieves a prediction accuracy of nearly 100.0%. In summary, the proposed MOS-based MEMS sensor array driven by pattern recognition algorithms can be integrated into portable devices, showing great potential and practical applications in the rapid, in situ, and on-site detection and identification of CWAs.

摘要

化学战剂(CWA),包括氰化氢(AC)、2-[氟(甲基)磷酰基]氧基丙烷(GB)、3-[氟(甲基)磷酰基]氧基-2,2-二甲基丁烷(GD)、乙基 S-(2-二异丙基氨基乙基)甲基硫代膦酸酯(VX)和二(2-氯乙基)硫醚(HD),对公共安全构成巨大威胁;因此,开发用于化学战剂的传感技术非常重要。在此,开发了一种由24个基于金属氧化物半导体(MOS)的MEMS传感器组成的传感器阵列,该传感器具有良好的气敏性能、简单的器件结构(0.9毫米×0.9毫米)和低功耗(平均<10毫瓦)。实验结果表明,在这24个传感器中,总有几个传感器对每种化学战剂都表现出良好的传感性能,例如相对显著的响应、较宽的检测范围(AC:5.8 - 89 ppm;GB:0.04 - 0.47 ppm;GD:0.06 - 4.7 ppm;VX:9.978×10 - 1.101×10;HD:0.61 - 4.9 ppm)以及低于这五种化学战剂的立即威胁生命和健康(IDLH)水平的低检测限。这表明这些传感器能够满足定性检测的需求,并能对低浓度化学战剂提供早期预警。此外,从传感响应的初始动力学特征和动态变化特征中提取了特征。最后,将主成分分析(PCA)和机器学习算法应用于化学战剂分类。获得的PCA图显示组间存在显著差异,并且机器学习算法中的窄神经网络实现了近100.0%的预测准确率。总之,所提出的由模式识别算法驱动的基于MOS的MEMS传感器阵列可集成到便携式设备中,在化学战剂的快速、原位和现场检测与识别方面显示出巨大潜力和实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f5c/12030887/69971ad4cd64/sensors-25-02633-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验