Fentaw Haftu W, Campbell Steve, Caton Simon
School of Computer Science, University College Dublin, Dublin, Ireland.
Centre for Quantum Engineering, Science, and Technology, University College Dublin, Dublin, Ireland.
Sci Rep. 2025 Apr 26;15(1):14605. doi: 10.1038/s41598-025-95161-0.
Understanding the quantum control landscape (QCL) is important for designing effective quantum control strategies. In this study, we analyze the QCL for a single two-level quantum system (qubit) using various control strategies. We employ Principal Component Analysis (PCA), to visualize and analyze the QCL for higher dimensional control parameters. Our results indicate that dimensionality reduction techniques such as PCA, can play an important role in understanding the complex nature of quantum control in higher dimensions. Evaluations of traditional control techniques and machine learning algorithms reveal that Genetic Algorithms (GA) outperform Stochastic Gradient Descent (SGD), while Q-learning (QL) shows great promise compared to Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO). Additionally, our experiments highlight the importance of reward function design in DQN and PPO demonstrating that using immediate reward results in improved performance rather than delayed rewards for systems with short time steps. A study of solution space complexity was conducted by using Cluster Density Index (CDI) as a key metric for analyzing the density of optimal solutions in the landscape. The CDI reflects cluster quality and helps determine whether a given algorithm generates regions of high fidelity or not. Our results provide insights into effective quantum control strategies, emphasizing the significance of parameter selection and algorithm optimization.
理解量子控制景观(QCL)对于设计有效的量子控制策略至关重要。在本研究中,我们使用各种控制策略分析单个二能级量子系统(量子比特)的QCL。我们采用主成分分析(PCA)来可视化和分析高维控制参数的QCL。我们的结果表明,诸如PCA之类的降维技术在理解高维量子控制的复杂性质方面可以发挥重要作用。对传统控制技术和机器学习算法的评估表明,遗传算法(GA)优于随机梯度下降(SGD),而与深度Q网络(DQN)和近端策略优化(PPO)相比,Q学习(QL)显示出很大的前景。此外,我们的实验强调了DQN和PPO中奖励函数设计的重要性,表明对于具有短时间步长的系统,使用即时奖励会导致性能提高,而不是延迟奖励。通过使用聚类密度指数(CDI)作为分析景观中最优解密度的关键指标,对解空间复杂性进行了研究。CDI反映聚类质量,并有助于确定给定算法是否生成高保真区域。我们的结果为有效的量子控制策略提供了见解,强调了参数选择和算法优化的重要性。