Suppr超能文献

光子贝叶斯神经网络:利用可编程噪声实现稳健且具有不确定性感知的计算。

Photonic Bayesian Neural Networks: Leveraging Programmable Noise for Robust and Uncertainty-Aware Computing.

作者信息

Zhuge Yangyang, Ren Zhihao, Xiao Zian, Zhang Zixuan, Liu Xinmiao, Liu Weixin, Xu Siyu, Ho Chong Pei, Li Nanxi, Lee Chengkuo

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.

Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.

出版信息

Adv Sci (Weinh). 2025 Apr 27:e2500525. doi: 10.1002/advs.202500525.

Abstract

Photonic neural networks (PNNs) based on silicon photonic integrated circuits (Si-PICs) offer significant advantages over microelectronic counterparts, including lower energy consumption, higher bandwidth, and faster computing speeds. However, the analog nature of optical signal in PNNs makes Si-PIC solutions highly sensitive to device noise, especially when using fixed-value deterministic models, which are not robust to hardware fluctuation. Furthermore, current PNNs are unable to handle data uncertainty, a critical factor in applications such as autonomous driving, medical diagnostics, and financial forecasting. Herein, a photonic Bayesian neural network (PBNN) architecture that incorporates Bayesian principles to enhance robustness and address uncertainty is proposed. In the PBNN, device noise is leveraged through photonic-noise-based random number generators, which combine Mach-Zehnder interferometers and micro-ring resonators to independently control output mean and standard deviation. Based on modelling with experimentally extracted data, the PBNN achieves a classification accuracy of up to 98% for handwritten digit recognition, matching full-precision models on conventional computers. Beyond classification, the PBNN excels in multimodal data processing, regression, and outlier detection. This scalable, energy-efficient architecture transforms photonic noise into computational value, addressing the limitations of deterministic PNNs and enabling uncertainty-aware computing for real-world applications.

摘要

基于硅光子集成电路(Si-PIC)的光子神经网络(PNN)相对于微电子同类产品具有显著优势,包括更低的能耗、更高的带宽和更快的计算速度。然而,PNN中光信号的模拟性质使得Si-PIC解决方案对器件噪声高度敏感,特别是在使用固定值确定性模型时,这种模型对硬件波动不够鲁棒。此外,当前的PNN无法处理数据不确定性,而这是自动驾驶、医学诊断和金融预测等应用中的关键因素。在此,提出了一种结合贝叶斯原理以增强鲁棒性并解决不确定性的光子贝叶斯神经网络(PBNN)架构。在PBNN中,通过基于光子噪声的随机数生成器利用器件噪声,该生成器结合马赫-曾德尔干涉仪和微环谐振器来独立控制输出均值和标准差。基于用实验提取的数据进行建模,PBNN在手写数字识别中实现了高达98%的分类准确率,与传统计算机上的全精度模型相当。除了分类,PBNN在多模态数据处理、回归和异常值检测方面表现出色。这种可扩展、节能的架构将光子噪声转化为计算价值,解决了确定性PNN的局限性,并为实际应用实现了不确定性感知计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验